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Abstract

We consider a three-player Bayesian persuasion game in which the sender designs a signal

about an unknown state of the world, the agent exerts a private effort that affects the underlying

state, and the receiver takes an action after observing the signal and its realization. The sender

must not only persuade the receiver to select a desirable action, but also incentivize the agent’s

effort. We develop a general method of characterizing an optimal signal in this environment.

We apply our method to derive concrete results in several natural examples and discuss their

economic implications.
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1 Introduction

We study optimal information design in the presence of moral hazard, introducing an additional
player—the agent—into the Bayesian persuasion framework. As in the standard setting, the sender
designs a signal structure that transmits information about an unknown state to a receiver, who se-
lects an action. Unlike the standard setting, the distribution of the underlying state is determined by
the agent’s unobservable effort. Thus, the signal structure influences the receiver’s beliefs through
two distinct channels: it determines the prior belief by incentivizing the agent’s effort, and it affects
the posterior belief by generating information about the realized state. Therefore, in our model,
the sender is concerned with both information and incentive provision. In this paper, we study the
tradeoff between these two objectives and explore its implications for optimal information design.

This tradeoff is a central feature in a variety of contexts. For example, universities assign grades
to market their students while also providing them with incentives to work. Retailers’ advertising
strategies are designed both to ensure product quality and to increase sales. Information and incen-
tive provision are also inherent in the functioning of the judiciary, which shapes citizens’ behavior
and reveals information about their actions to society. Similarly, an organization’s method of fore-
casting a project’s return influences its own future funding decisions and the project manager’s
initial effort.

To understand the underlying issues more clearly, consider the following example, which is
borrowed from Kamenica and Gentzkow (2011) (KG, hereafter), but cast into a different context.
A school (the sender) wishes to place a student (the agent) in a job. The student’s ability to perform
the job is uncertain: he may be skilled (type s) or unskilled (type u). The school and student both
obtain payoff 1 if the student is hired and payoff 0 otherwise. However, the firm prefers to hire only
skilled students. Thus, the firm (receiver) offers the job if and only if it believes that the student is
skilled with probability at least 1/2. Initially, the school and firm believe that the student is skilled
with probability 3/10. Thus, the firm will not hire the student based solely on the prior. The school
commits to a grading policy, which assigns a student either grade g or b, where (πs, πu) represent
the probabilities that the student is issued grade g given his type.

Because the prior belief is exogenous, the school is not concerned with providing incentives,
only information. Applying ideas from KG, it is easy to show that the optimal grading policy
“inflates” the grades of unskilled students. Because it brings bad news about the student’s skill,
grade b never generates a job offer. In contrast, g generates a job offer if and only if it conveys
sufficient good news. Thus, the school’s goal is to assign grade g as often as it can, while main-
taining sufficient informativeness to generate an offer. Clearly, it is optimal to always assign g to
a skilled student, πs = 1. By increasing πs, the school increases both the frequency of g and the
good news it conveys. In contrast, by increasing πu, the school increases the frequency of grade
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g but reduces its informativeness. In this example, maintaining the informativeness of grade g
constrains πu ≤ 3/7. Therefore, the optimal grading policy is πs = 1 and πu = 3/7. Under the
optimal grading policy, the student gets the job with probability 3/5, even though he is skilled with
probability 3/10. The probability that the student is skilled is 1/2 conditional on grade g and 0

conditional on grade b. Therefore, either the firm is indifferent between offering the job and not
(if the grade is g), or it strictly prefers not to offer the job (if b). Regardless, its payoff is the same
as if it acts on its prior belief and rejects the student. In other words, observing the grade does not
improve the firm’s payoff.

Now suppose that the probability that the student is skilled depends on his unobservable effort.
In particular, after the grading policy is set by the school, the student privately chooses whether to
shirk or work. In the former case, the student is unskilled with probability 1, while in the latter
case, the student is skilled with probability 3/10. The student’s disutility of work is c = 1/5.

Because the student’s private effort determines the distribution of his type, the school must
be concerned with both incentive and information provision when it designs its grading policy.
Indeed, if the grading policy fails to provide incentives for the student to work, then the firm infers
that the student is unskilled and never offers the job, resulting in the worst outcome for both school
and student. Furthermore, even if the student works, he will never get an offer if grade g does not
convey sufficient good news. Therefore, the school must design its grading policy to ensure both
that the student prefers to work,
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and that grade g is sufficiently informative to generate an offer when the firm anticipates that the
student works (πu ≤ 3/7).

Both incentive and information provision shape the optimal grading policy. On one hand,
increases in πs are beneficial to both information and incentive provision, resulting in a more
informative grade g and a higher payoff difference between work and shirk. Therefore, πs = 1

is also optimal with moral hazard. On the other hand, increases in πu are detrimental to both
information and incentive provision, reducing the informativeness of g and the payoff difference
between work and shirk. Provided g leads to an offer, inducing student effort requires πu ≤ 1/3,
which is more restrictive than the condition on informativeness. Thus, the optimal grading policy
is πs = 1 and πu = 1/3. In order to eliminate shirking, the school inflates grades less than in the
preceding case (1/3 < 3/7). Under the optimal policy, the probability of a job placement is equal
to 8/15. This placement probability falls short of the optimal outcome in the absence of moral
hazard (3/5), demonstrating the cost of moral hazard for the student and school. In contrast, moral
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hazard benefits the firm: its belief conditional on grade g is 9/16(> 1/2) and, therefore, it now has
a strict preference to hire a student with grade g.

In what follows, we explore this interaction of incentive and information provision in the
Bayesian persuasion framework. Our model has the same basic structure as the preceding ex-
ample, but it is considerably more general, allowing for any finite number of underlying states,
arbitrary preferences, and a continuous effort choice for the agent. Our analysis proceeds in two
steps. We first develop a general characterization of the sender’s optimal signal. We then apply it
to derive additional results in two tractable environments.

Our characterization of the optimal signal extends the elegant concavification method in Au-
mann and Maschler (1995) and KG. In KG, this method works because the sender’s problem can
be reformulated as a constrained optimization problem in which both the objective function (the
sender’s expected utility) and the constraint (Bayes-Plausibility) can be written as expectations
taken with respect to the distribution of posteriors. In our model, the sender faces an additional
constraint that, as in standard moral hazard models, ensures that the agent has an incentive to
choose the effort level intended by the sender. We show that this incentive compatibility constraint
can also be expressed as an expectation with respect to the posterior belief distribution. Exploit-
ing this feature, we describe how to concavify the sender’s objective function and the incentive
constraint simultaneously, characterizing the optimal signal geometrically and analytically.1

Two general results highlight the role of moral hazard, which distinguishes our analysis from
the most relevant literature (Kamenica and Gentzkow, 2011; Alonso and Câmara, 2016). First,
absent the need to provide incentives, if the sender’s utility is concave in the receiver’s posterior
belief, then it is optimal for the sender to reveal no information. In our model, such a signal leads to
zero effort by the agent and, therefore, is not optimal in most economically relevant environments.2

Second, absent the need to provide incentives, if there are N possible states, then an optimal signal
utilizes at most N signal realizations. In our model, the number increases by 1; that is, an optimal
signal may require N + 1 realizations. This difference arises from the incentive constraint, which
necessitates an extra degree of freedom.

We provide additional concrete results in two tractable environments: one with two states (and
many actions for the receiver) and another with two actions for the receiver (and many states).
In both environments, we characterize the set of implementable effort levels under some natural
economic assumptions. In the binary-state environment, a fully informative signal maximizes the
agent’s effort, but in the binary-action environment, this is not the case. Furthermore, we explic-
itly characterize the optimal signal. In the binary-state environment, we derive conditions under

1See Doval and Skreta (2018) and Le Treust and Tomala (2019) for related contributions.
2Providing no information is optimal, for example, if the agent has fully opposing preferences from those of the

sender (i.e., the sender wishes to minimize the agent’s utility).
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which the optimal signal garbles information about only one state and discuss its economic impli-
cations. In the binary-action environment, we show that the optimal signal is a binary partition,
and illustrate how it is affected by moral hazard.

One particularly interesting question is the effects of transparency which allows the receiver
to observe the agent’s effort. Intuitively, it is reasonable to expect that transparency “crowds out”
incentive provision, reducing the informativeness of the equilibrium signal. At the same time,
because the agent’s effort is observed, the agent can directly affect the receiver’s inference by
increasing his effort, which gives an additional incentive for the agent to work. Thus, it is natural
to expect that transparency introduces a tradeoff for the receiver: more effort, but less information.
This tradeoff appears in some of the environments we consider, but not in all of them. In particular,
we provide an example in which transparency reduces both the informativeness of the equilibrium
signal and the agent’s effort. We also demonstrate that transparency can be harmful to the receiver.
These results offer a perspective on the adverse consequences of transparency that does not stem
from pandering incentives (Prat, 2005; Levy, 2007).

Since a pioneering contribution by Kamenica and Gentzkow (2011), the literature on Bayesian
persuasion has been growing rapidly. The basic framework has been extended to accommodate,
for example, multiple senders (Boleslavsky and Cotton, 2015; Li and Norman, 2018; Au and
Kawai, 2020; Gentzkow and Kamenica, 2017; Boleslavsky and Cotton, 2018), multiple receivers
(Alonso and Câmara, 2016; Chan et al., 2019), a privately informed receiver (Kolotilin et al., 2017;
Kolotilin, 2018; Guo and Shmaya, 2019), dynamic environments (Ely, 2017; Renault et al., 2017),
and the possibility of falsification (Perez-Richet and Skreta, 2017). More broadly, optimal informa-
tion design has been incorporated into various economic contexts, including price discrimination
(Bergemann et al., 2015), monopoly pricing (Roesler and Szentes, 2017), and auctions (Bergemann
et al., 2017).

Two contemporary papers, Rodina (2017) and Rodina and Farragut (2017), study a similar
three-player game to ours. The main difference lies in the sender’s objective.3 In our model, the
sender has general preferences over the receiver’s actions. The sender is indirectly concerned with
the agent’s effort, because the receiver’s posterior beliefs (and the actions they induce) depend on
the receiver’s conjecture about the agent’s effort. In contrast, in both Rodina (2017) and Rodina and
Farragut (2017), the sender is concerned only with maximizing the agent’s effort.4 On one hand,
this objective can be accommodated in our analysis by specifying that the sender’s payoff is linear

3See also Bloedel and Segal (2018), Habibi (2020), and Zapechelnyuk (2020). These papers also study the tension
between incentive and information provision in the Bayesian persuasion framework. Habibi (2020) and Zapechelnyuk
(2020) consider specific applications, self-motivation and certification, respectively. In Bloedel and Segal (2018), the
tension between incentive and information provision arises from the receiver’s limited attention.

4In this sense, these papers are related to Hörner and Lambert (2020), who characterize the rating system that
maximizes the agent’s effort in a dynamic career concerns model with various information sources.
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in the receiver’s posterior belief. On the other hand, these authors provide a more thorough analysis
of this case than we do, analyzing multiple settings with different assumptions about information
asymmetry and the production technology.5

Also related is Boleslavsky and Cotton (2015), who analyze a Bayesian persuasion model
of school competition. In their baseline model, students are passive, but they also consider an
extension in which each student must exert effort in order to acquire skill. Their main focus is on
a tradeoff between school investment and loose academic standards. Furthermore, their analysis
relies heavily on the assumptions of binary actions for the receiver (evaluator in their model) and
binary effort for the students.

Rosar (2017) studies the design of an optimal test when a privately informed agent chooses
whether or not to participate. The participation decision signals some of the agent’s private in-
formation, which leads to an endogenous prior belief. Focusing on an environment with binary
states, the author derives conditions under which the participation constraint can be summarized
by a single indifference condition for the threshold type and characterizes an optimal test via con-
cavification of the Lagrangian, similar to what we do in this paper. He finds that the optimal test
is a “no false-positive” test. In contrast, in our binary-state environment, both “no false-positive”
and “no false-negative” signals can be optimal.

The remainder of this paper is organized as follows. Section 2 introduces our general model.
Section 3 explains how to reformulate the sender’s problem as a constrained optimization problem
and characterize the solution to the problem. Section 4 considers the case where there are two
states, and Section 5 analyzes the case where there are two actions. Section 6 addresses two
economic questions particularly relevant to our model/analysis, and Section 7 concludes.

2 The Model

The game. There are three players, sender (S), agent (A), and receiver (R), and an unobservable
state ω ∈ Ω ≡ {1, ..., N} whose distribution is determined by the agent’s effort. The game unfolds
in three stages. In the first stage, the sender designs and publicly reveals a signal structure π, which
consists of a message space Σ and a set of conditional probability distributions {πω(·)}ω∈Ω over Σ,
where πω(s) represents the probability that message s ∈ Σ is realized conditional on state ω ∈ Ω.
As in KG, we impose no structural restriction on the sender’s choice of π; that is, the sender can
choose any finite set Σ and any conditional probabilities πω(·) over this set. In the second stage,

5Two other papers combine elements of information design and moral hazard in novel ways. Barron et al. (2020)
consider a canonical principal-agent model in which the agent can add mean-preserving noise after observing an
intermediate output, and show that if the agent is risk neutral, then a linear contract is optimal. Georgiadis and Szentes
(2020) introduce endogenous monitoring into a dynamic principal-agent model. By applying ideas from information
design, they show that the optimal contract has a simple binary structure.
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the agent observes the chosen signal structure π and chooses an effort e ∈ [0, 1]. Given e, the
state is drawn according to the probability distribution ηe ∈ ∆(Ω).6 We use ηe(ω) to denote the
probability that state ω is realized conditional on effort e. In the third stage, a message s ∈ Σ is
realized according to the given signal structure π. The receiver observes π and s, and chooses an
action x from a compact set of feasible actions X . Note that e is the agent’s private effort, so the
receiver does not observe it.

The sender’s utility, uS(x, ω), and the receiver’s utility, uR(x, ω), depend on the receiver’s
action and the underlying state. The agent’s utility depends on the receiver’s action and his own
effort e.7 For convenience, we assume that the agent’s utility function is additively separable and
given by uA(x)− c(e). We impose standard restrictions to ensure that the agent’s problem is well-
behaved: uA(·) is non-negative and bounded. c(·) is strictly increasing, strictly convex, and twice
continuously differentiable, with c(0) = c′(0) = 0 and c′(1) sufficiently large.8 All agents are risk
neutral and maximize their expected utility.

Reformulation. Let µ ∈ ∆(Ω) denote the receiver’s belief about the state, where µ(ω) denotes
the probability that the state is ω. For any µ, let x∗(µ) denote the set of the receiver’s optimal
mixed actions; that is, x∗(µ) ≡ ∆(x(µ)) where x(µ) ≡ argmaxx∈XEµ[uR(x, ω)]. Then, we can
reformulate the agent’s and the sender’s payoffs as follows:

vA(µ) ≡ uA(x∗(µ)) and vS(µ) ≡ Eµ[uS(x∗(µ), ω)].

In other words, inducing a particular action x ∈ X is identical to inducing a posterior µ under
which the receiver’s optimal action is x. As in KG, this reformulation allows us to abstract away
from details of the receiver’s actual decision problem without incurring any loss of generality. Note
that x∗(µ) is not necessarily a singleton and, therefore, both vA and vS are correspondences in
general. For ease of exposition, we treat x∗(µ) (and vA(·) and vS(·)) as a function unless necessary
and noted otherwise.

6As is standard, we let ∆(Y ) denote the set of all probability distributions (vectors) over finite set Y .
7We assume that the agent’s utility does not depend on the state ω for two reasons. From a technical perspective,

this assumption enables us to redefine the agent’s utility as a function of the receiver’s posterior belief alone, as
explained shortly. If the agent’s utility also depends on the state, then this reformulation is more complicated, because
the agent’s payoff would depend both on the receiver’s public belief (which depends on his conjecture about the agent’s
effort) and on the agent’s private belief (which depends on his actual effort choice). From an economic perspective,
this assumption implies that the agent’s motivation for effort is purely extrinsic: that is, he exerts effort not because he
inherently cares about the realization of the state, but to induce the receiver to take a desirable action. For example,
in the context of education, a student exerts effort to increase the probability of getting a job, not because he values
education itself.

8The assumption on c′(1) is only to ensure that the agent’s optimal effort is less than 1. The necessary bound for
c′(1) varies across different specifications and will be provided when necessary.
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Linear production technology. We restrict attention to the following production technology:
for two probability vectors µ and µ(6= µ) in ∆(Ω),

ηe = (1− e)µ+ eµ,

where both µ and µ have full support on Ω. In other words, the probability distribution that gen-
erates the underlying state ω is linear in the agent’s effort e. One may imagine that the state is
the realization of a compound lottery in which the agent’s effort represents the probability that the
state is drawn from µ rather than µ. As shown in Section 3.1, this technology guarantees that the
agent’s optimal effort under any signal is fully characterized by the first-order condition of his op-
timization (i.e., the first-order approach is valid), which streamlines the formulation of the sender’s
signal design problem.

Equilibrium definition. We study perfect Bayesian equilibria of this game. An equilibrium
consists of a signal π, the agent’s effort e (for each possible signal), and a belief system M ≡
{µs}s∈Σ (also for each possible signal), which satisfy the following properties: (i) given any signal
π and the receiver’s belief system M , the agent’s effort e maximizes his expected utility, (ii) the
receiver’s belief system M is consistent with the agent’s effort e and the signal π, and (iii) the
chosen signal π maximizes the sender’s expected utility.

3 General Characterization

In this section, we provide a general characterization of the sender’s optimal signal. In particular,
we show how to extend the geometric characterization in Kamenica and Gentzkow (2011) to allow
for the agent’s moral hazard.

3.1 Formulating the Sender’s Problem

We first analyze the equilibrium of the subgame between the receiver and the agent and use it to
reformulate the sender’s choice as a constrained optimization problem.

Subgame. Suppose that the sender has chosen a signal π : Σ×Ω→ [0, 1], where πω(s) denotes
the probability that s ∈ Σ is realized conditional on ω ∈ Ω. The receiver does not observe the
agent’s effort e but should have a conjecture (belief) about it. Let ê denote such a conjecture by the
receiver and µs|(π,ê) ∈ ∆(Ω) represent the receiver’s updated belief following s ∈ Σ. Given ê, (the
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receiver believes that) state ω ∈ Ω is realized with probability ηê(ω). Therefore, by Bayes’ rule,

µs|(π,ê)(ω) ≡ ηê(ω)πω(s)∑
ω′ ηê(ω

′)πω′(s)
for all ω ∈ Ω.

The agent’s payoff depends on his effort, the signal structure π, and the receiver’s belief struc-
ture {µs}s∈Σ, where µs ∈ ∆(Ω) denotes (the agent’s belief about) the receiver’s belief upon ob-
serving s ∈ Σ. In particular, the effort and signal structure together determine the probability of
each signal realization, while the belief structure determines the associated reward. Specifically,
given π and {µs}s∈Σ, the agent’s problem is given by

max
e∈[0,1]

∑
ω

ηe(ω)

(∑
s

πω(s)vA(µs)

)
− c(e).

The first term is linear in e, because ηe(ω) = (1− e)µ(ω) + eµ(ω) for all ω ∈ Ω. Since the second
term c(e) is strictly convex, the agent’s optimal effort is fully characterized by the following first-
order condition: ∑

ω

(µ(ω)− µ(ω))

(∑
s

πω(s)vA(µs)

)
≤ c′(e),

with equality holding if e > 0.9

The receiver’s belief structure {µs|(π,ê)} depends on the conjectured effort ê, while the agent’s
optimal effort e depends on the receiver’s belief structure {µs}. In equilibrium, the conjectured
effort ê should coincide with the agent’s actual effort choice e. Therefore, the equilibrium belief
structure {µs}must be based on the equilibrium effort level e, and this effort level must be optimal
for the agent given the receiver’s belief structure. This yields the following equilibrium conditions,
which fully summarize the equilibria of the subgame between the agent and the receiver given
signal π:

µs = µs|(π,e) and
∑
ω

(µ(ω)− µ(ω))

(∑
s

πω(s)vA(µs)

)
≤ c′(e), (1)

with equality holding if e > 0.

Sender’s problem. Given the preceding characterization of the subgame, the sender’s problem
can be written as

max
π,e

∑
ω

ηe(ω)

(∑
s

πω(s)vS(µs)

)
subject to the two conditions in (1).

9Our maintained assumption that c′(1) is sufficiently large ensures that the optimal effort is always less than 1.

8



In other words, the sender chooses π and e in order to maximize her expected payoff subject to
the constraint that e and {µs}s∈Σ must constitute an equilibrium of the subgame given the sender’s
choice of π.

For most of the paper, we study the sender’s optimization problem given a particular target
effort level e.10 In other words, we treat e as a parameter of the sender’s optimization, rather than
a choice variable. Following the standard approach in mechanism design, we assume that if mul-
tiple equilibria exist for a given signal structure, then the agent and receiver will comply with the
sender’s choice among them. For the global solution to the sender’s problem, it suffices to identify
the effort level that maximizes the sender’s (indirect) expected payoff, which is complicated in
general but reduces to a straightforward optimization in many specific settings.

Note that for some effort levels, there may not exist a signal that generates them as part of a
subgame equilibrium. We characterize the set of implementable efforts–the set of effort levels that
can be induced by some signal π–in more specific environments in Sections 4 and 5.

The following result allows us to reformulate the sender’s problem so that she chooses a distri-
bution of posteriors τ ∈ ∆(∆(Ω)) instead of a signal π, which increases tractability.

Lemma 1 Given any positive target effort e(> 0), there exists a signal π that satisfies the two

conditions in (1) if and only if there exists a distribution of posteriors τ ∈ ∆(∆(Ω)) such that

(i) Eτ [µ] = ηe (Bayes-Plausibility), and

(ii) Eτ
[
Eµ
[
µ(ω)−µ(ω)

ηe(ω)

]
vA(µ)]

]
= c′(e) (Incentive Compatibility).

The two conditions in the lemma are restatements of the equilibrium conditions in (1) in the
space of posterior beliefs. To understand the link, fix a signal structure π and effort e. Without loss
of generality, assume that for each realization s ∈ Σ, the receiver has a distinct Bayesian update
µs ∈ ∆(Ω). Then, the probability that the Bayesian update is µs is equal to

τ(µs) =
∑
ω′

ηe(ω
′)πω(s).

Plugging this into µs = µs|(π,e) and arranging the terms, for each ω ∈ Ω, we get

µs(ω) =
ηe(ω)πω(s)∑
ω′ ηe(ω

′)πω(s)
=
ηe(ω)πω(s)

τ(µs)
⇒ πω(s) = τ(µs)

µs(ω)

ηe(ω)
. (2)

10An equilibrium with zero effort always exists in the subgame between agent and receiver. Furthermore, multiple
equilibria with distinct, strictly positive effort levels may also exist in this subgame. However, because different
equilibria are associated with distinct effort levels, for a particular target effort, the sender’s problem is well-defined,
despite the possibile equilibrium multiplicity in the subgame.
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Clearly, starting with a signal structure and an equilibrium effort, we can compute the resulting
distribution of posterior beliefs. Equation (2) shows that the process can be reversed: given any
Bayes-plausible distribution of posteriors, one can also derive the underlying signal structure that
gives rise to the distribution. To derive (IC), it suffices to combine equation (2) with equation (1):

∑
ω

(µ(ω)− µ(ω))

(∑
s

πω(s)vA(µs)

)
=
∑
ω

(µ(ω)− µ(ω))

(∑
s

τ(µs)
µs(ω)

ηe(ω)
vA(µs)

)

=
∑
s

τ(µs)

[∑
ω

(
µs(ω)

µ(ω)− µ(ω)

ηe(ω)

)]
vA(µs) = Eτ

[
Eµ
[µ(ω)− µ(ω)

ηe(ω)

]
vA(µ)

]
.

Two aspects of (IC) are worth highlighting. First, it immediately implies that a degenerate
posterior distribution (equivalently, an uninformative signal) can implement only e = 0.11 In other
words, dispersion in the posterior belief distribution is necessary to induce the agent’s positive
effort. As shown later, however, it is not necessarily the case that more dispersion induces more
effort (see Section 5). Furthermore, in the absence of (IC), the sender would use an uninformative
signal whenever her payoff function is concave in µ. Thus, the desire to motivate the agent forces
the sender to introduce distortions in that case (see Section 4).

Second, the likelihood ratio term µ(ω)−µ(ω)

ηe(ω)
also appears in the standard moral hazard model

(where the principal controls the agent’s rewards). There, this term arises from the principal’s

optimization, reflecting the benefit/cost of distorting the agent’s compensation away from the first
best for a particular output (state) realization (Hölmstrom, 1979). In contrast, in our model, these
terms emerge from the agent’s optimization, appearing directly in his first-order condition via
the inversion of Bayes’ rule. Despite this difference, existing insights in the literature help us to
interpret (IC). In the standard model, this likelihood ratio is interpreted as a statistical estimate
of the agent’s effort from the observed output (state), where a high value suggests high effort.
Thus, the principal acts as if he estimates the agent’s effort from the output and rewards the agent
according to this estimate. In our model, allocating mass to a particular posterior belief has a large
impact on (IC) when the covariance between the agent’s payoff from the realization (vA(µ)) and
the expected value of the receiver’s statistical estimate of effort (Eµ

[
µ(ω)−µ(ω)

ηe(ω)

]
) is large. Thus, in

our model the agent acts as if his benefit or loss at a particular realization is scaled by the receiver’s
estimate of his effort, even though his reward depends only on the receiver’s action.12

11For a degenerate distribution to satisfy (BP), the unique posterior belief must be equal to the prior, that is, µ = ηe.
Then, it violates the IC constraint whenever e > 0, because

Eτ
[
Eµ
[µ(ω)− µ(ω)

ηe(ω)

]
vA(µ)

]
=

(∑
ω

(
µ(ω)− µ(ω)

))
vA(ηe) = 0 · vA(ηe) = 0 < c′(e) for any e > 0.

12In particular, given a Bayes-Plausible distribution of posteriors, the equilibrium effort can be derived from the
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3.2 Main Characterization

We now characterize the sender’s optimal signal structure. Lemma 1 implies that given e > 0, the
sender’s problem can be written as

max
τ∈∆(∆(Ω))

Eτ [vS(µ)] subject to (BP ) Eτ [µ] = ηe and (IC) Eτ [h(µ)] = 0, (3)

where

h(µ) ≡ Eµ
[
µ(ω)− µ(ω)

ηe(ω)

]
vA(µ)− c′(e) for each µ ∈ ∆(Ω).

We let τ e denote an optimal solution to this problem (i.e., an optimal distribution of posteriors
that implements effort e) and V e denote the corresponding expected utility of the sender (i.e.,
V e ≡ Eτe [vS(µ)]). Crucially, in (3), the objective function and the two constraints are expecta-
tions of certain functions of µ with respect to τ . This property allows us to extend the geometric
characterization in Aumann and Maschler (1995) and KG to our problem.

Consider the following curve inRN+2:

Ke ≡ {(µ, h(µ), vS(µ)) : µ ∈ ∆(Ω)}.

By construction, each element of Ke corresponds to ex post values for the three objects in (3): the
first N components are µ = (µ(1), ..., µ(N)), which are the ex post values of each component of
(BP). The last two components are the ex post values of (IC) and the sender’s payoff, respectively.

Next, construct the convex hull of Ke, denoted by co(Ke). By definition, co(Ke) consists of
all convex combinations of the elements of Ke. Therefore, co(Ke) captures all ex ante values of
(BP), (IC), and sender payoff that can be generated by choosing a probability measure over ∆(Ω).
Economically, this can be interpreted as the “production possibility set” for the Bayesian persua-
sion problem, specifying which values of (BP), (IC), and sender payoff are feasible (consistent)
with the sender’s “technology.” The problem is then to find the maximal expected utility of the
sender inside of co(Ke), while respecting the two constraints, as formally stated in the following
theorem. The result on the cardinality of the support follows from Caratheodory’s theorem.13

Theorem 1 Suppose e(> 0) is implementable. Then, the maximal utility the sender can obtain

following optimization problem: maxe Eτ [Eµ[log(ηe(ω))]vA(µ)] − c(e). Thus, the equilibrium effort is identical
to the effort choice of a “virtual agent” who takes the distribution of the posterior belief as given and has payoff
Eµ[log(ηe(ω))]vA(µ)] − c(e) at each µ. The “virtual” payoff function weighs the agent’s true payoff vA(µ) by the
expected value of the log-likelihood function.

13To be precise, it is not a direct application of Caratheodory’s theorem, which states that any point on the boundary
of a convex set inRN+2 can be composed of at mostN+2 extreme points (realizations). However, one dimension can
be eliminated, because ∆(Ω) is an (N − 1)-dimensional simplex (i.e.,

∑
ω µ(ω) = 1 for any µ ∈ ∆(Ω)). Therefore,

we can reduce the necessary number of realizations by 1.

11
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Figure 1: The left panel depicts the curve Ke, while the right panel depicts its convex hull co(Ke).
In this example, n = 2 and µ represents the probability that ω = 2. In addition, ηe = E[µ] = 0.4,
vA(µ) = µ, and vS(µ) = 1− (1− µ)4.

conditional on targeting e is equal to

V e = max{v : (ηe, 0, v) ∈ co(Ke)}.

In addition, there exists an optimal distribution of posteriors τ e ∈ ∆(∆(Ω)) whose support con-

tains at most N + 1 posteriors (i.e., |supp(τ e)| ≤ N + 1).

Proof. Consider the following subset of co(Ke):

He ≡ {(y1, y2, y3) ∈ co(Ke) : y1 = ηe, y2 = 0}.

Since e is implementable, He is not empty. In addition, by construction, it includes all the
points that are convex combinations of the elements of Ke (i.e., y1 = Eτ [µ], y2 = Eτ [h(µ)],
and y3 = Eτ [vS(µ)]) and satisfy the two constraints (i.e., y1 = ηe and y2 = 0). Therefore,
max{v : (ηe, 0, v) ∈ co(Ke)} is the maximal value to the problem in (3). Because Ke is closed
and bounded, co(Ke) is also closed and bounded, and hence, this maximum is attained. For the
result on the cardinality of the support of τ e, see the appendix.

Figure 1 illustrates the argument in the binary-state case. Here, the receiver’s belief can be
represented by a single variable µ(2) ∈ [0, 1]. In a slight abuse of notation, we replace µ(2) by
µ and ηe(2) by ηe. The left panel depicts the 3-dimensional curve Ke ≡ {(µ, h(µ), vS(µ)) : µ ∈
[0, 1]}, while the right panel shows its convex hull co(Ke). The vertical rod in both panels is built
upon (ηe, 0, 0). In order to find V e, it suffices to move up along the rod and identify the highest
point in co(Ke). Clearly, the optimal point (ηe, 0, V

e) is on the boundary of co(Ke) ⊂ R3. By
Caratheodory’s theorem for the boundary, (ηe, 0, V

e) is a convex combination of no more than

12



three elements of Ke.
In the absence of moral hazard, h(µ) is irrelevant. Therefore, the component of co(Ke) rep-

resenting h(µ) can be eliminated, and our geometric argument reduces to the one in KG. In this
case, the boundary of co(Ke) reduces to the concave envelope of vS(·), and the sender’s payoff is
the value of the concave envelope at the prior belief ηe. In Figure 1, eliminating the dimension cor-
responding to h(µ) projects co(Ke) into the plane of (µ, vS(µ)), which is identical to the concave
envelope in KG. From a technical perspective, moral hazard introduces an additional dimension
(IC) into the sender’s optimization problem, constraining the sender’s choice of posterior belief
distribution along this dimension and increasing the number of required realizations by 1.

There are two other noteworthy points regarding Theorem 1. First, it does not crucially depend
on our restriction to the linear production technology (i.e., ηe = eµ + (1 − e)µ). The same
logic goes through unchanged as long as the subgame equilibrium effort is fully characterized by
the agent’s first-order condition (i.e., the first-order approach is valid). As explained above, the
linear production technology guarantees this latter property but is not necessary for it. Second, our
argument also extends to other settings in which a game between the receiver and the agent (or
agents) imposes additional constraints on the sender’s problem, provided that these constraints can
be written as expectations with respect to τ (i.e. each constraint can be written as Eτ [F (µ)] = 0 for
some function F (·)).14 The only difference is that when there are a total of k constraints (including
(BP)), the maximal necessary number of posterior belief realizations is n+ k − 1.

3.3 Optimality Conditions

While useful for understanding the structure of the sender’s problem, Theorem 1 does not establish
explicit necessary and sufficient conditions for optimality. We now develop such conditions using
our preceding characterization. The result is based on the observation that (ηe, 0, V

e) lies on the
boundary of a convex set co(Ke) and, therefore, there exists a supporting hyperplane to co(Ke) at
(ηe, 0, V

e).

Theorem 2 A distribution of posteriors τ e is a solution to the sender’s problem (3) if and only if

it satisfies (BP), (IC), and there exist λ0 ∈ R, ψ ∈ R, and λ1 ∈ RN such that15

L(µ, ψ) ≡ vS(µ) + ψh(µ) ≤ λ0 + 〈λ1, µ〉, for all µ ∈ ∆(Ω),

14Whether or not a constraint can be represented as an expectation with respect to τ depends on the underlying
economic problem. For example, the participation constraints in Rosar (2017) are reduced to a single constraint that
can be represented as an expectation, while the no-falsification constraint in Perez-Richet and Skreta (2017) cannot be
represented in this way.

15We use 〈·, ·〉 to denote the inner product between two vectors of the same dimension; that is, for any y, z ∈ RN ,
〈y, z〉 ≡ y(1)z(1) + ...+ y(N)z(N).
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Figure 2: The concave solid curve depicts vS(µ), while the other solid curve depicts L(µ, ψ) =
vS(µ) + ψh(µ), with the same data as in Figure 1 and c(e) = e2/2.

with equality for all µ such that τ e(µ) > 0.

Proof. Here, we illustrate only how the existence of the supporting hyperplane leads to the inequal-
ity above, relegating the rest of the proof to the appendix. Given the supporting hyperplane, we can
find a normalized direction vector d ≡ (−λ, ψ, 1) ∈ RN+2 and a scalar λ0 such that 〈d, y〉 ≤ λ0

for all y ∈ co(Ke), with equality for y = (ηe, 0, V
e). It follows that 〈d, z〉 ≤ λ0 for any vector

z ∈ Ke. Expanding this inner product yields L(µ, ψ) ≤ λ0 + 〈λ1, µ〉 for all µ ∈ ∆(Ω).

Figure 2 illustrates Theorem 2 for the binary-state case where vS(µ) is an increasing concave
function of µ = Pr{ω = 2}. If ψ = 0, then the condition is identical to the corresponding
condition in KG. An optimal signal can be found by first drawing a line λ0 + λ1µ that supports
vS(µ) above ηe. The straight line is, in essence, the concave closure of vS(µ), the sender’s payoff
is the value of the line at ηe, and the optimal signal is supported on the posterior beliefs at which
the supporting line meets the sender’s payoff function. In Figure 2, vS(µ) is concave, and thus, in
the absence of moral hazard the sender’s maximal utility is achieved with a degenerate posterior
distribution.

Moral hazard requires two changes. First, concavification applies to L(·, ψ) rather than vS(·),
which are different whenever ψ 6= 0 (which is always the case if vS(·) is concave). Second, (IC)
must hold, which also imposes restrictions on the Lagrangian and optimal posterior distribution.
Note that (IC) implies Eτe [L(µ, ψ)] = Eτe [vS(µ)]. Graphically, Eτe [L(µ, ψ)] is the value of the
Lagrangian’s supporting line (the dashed red line) evaluated at ηe. Similarly, Eτe [vS(µ)] can be
obtained by constructing the corresponding chord of the sender’s payoff function (the blue dashed
line) and evaluating it at ηe. If (IC) is satisfied, then the chord of the payoff function and the
supporting line of the Lagrangian intersect above ηe. In some cases, as shown in Section 4.4,
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satisfying (IC) requires a third realization, in which case the supporting line meets the Lagrangian
at three distinct values of µ and each µ receives positive probability in the optimal signal. In the
binary case of KG, this is inconsequential: vS(·) may meet the supporting line at more than two
points, but an optimal distribution of posteriors can always be supported on only two such points.

4 Binary States

In this section, we consider a tractable environment in which there are only two states (i.e.,
Ω = {1, 2}) and, therefore, the receiver’s belief can be represented by a scalar. In a slight abuse
of notation, we treat µ, µ, µ, and ηe as scalars between 0 and 1 and use them to represent the
probability that ω = 2. We assume that µ > µ, so that effort increases the probability that ω = 2.
We first offer some general characterization results and then analyze three representative examples
in detail.

We maintain the following assumptions through this section.

(i) Monotonicity: both vA(·) and vS(·) are increasing in µ, and vA(µ) < vA(µ).

(ii) Normalization: vA(0) = vS(0) = 0 and vA(1) = vS(1) = 1.

(iii) Interior effort: c′(1) > µ− µ > 0.

Assumption (i) implies that the interests of the sender and the agent are aligned: both want the
receiver’s belief to be as high as possible. Assumption (ii) is purely for convenience. Assumption
(iii) ensures that the agent’s equilibrium effort is less than 1.

4.1 Implementable and Incentive-free Effort Levels

We say that a target effort is implementable if there exists a signal π (equivalently, a distribution of
posteriors τ ) that satisfies both (BP) and (IC). The following proposition shows that an effort level
is implementable if and only if it is below a certain threshold.

Proposition 1 In the binary-state model, e is implementable if and only if e ≤ e, where e is the

value that satisfies c′(e) = µ− µ. The maximal effort e is induced if and only if the signal is fully

informative.

Proof. See the appendix.

For the intuition, notice that with binary states, equation (1) reduces to

(µ− µ)

(∑
s

π2(s)vS(µs)−
∑
s

π1(s)vS(µs)

)
= c′(e).
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Therefore, the agent’s incentive depends exclusively on the difference in the expected rewards
in the two possible states,

∑
s π2(s)vS(µs) −

∑
s π1(s)vS(µs). Given the assumptions on vA(·),

this term cannot exceed 1 (because π1(s), π2(s), vS(µ) ∈ [0, 1] for all ω = 1, 2 and µ ∈ [0, 1])
and achieves 1 if and only if

∑
s π2(s)vS(µs) = 1 and

∑
s π1(s)vS(µs) = 0. For the latter, it

is necessary and sufficient that the signal perfectly distinguishes between the two states, so that
vS(µs) = 1 whenever π2(s) > 0 and vS(µs) = 0 whenever π1(s) > 0.

As is well-known, in the absence of moral hazard, a fully informative signal (which maximally
disperses the distribution of posteriors) is optimal if vS(·) is convex, while a fully uninformative
signal (which induces a degenerate posterior) is optimal if vS(·) is concave. An immediate, but
important, corollary of Proposition 1 is that the former result continues to hold, while the latter
result fails in the case of moral hazard.

Corollary 1 In the binary-state model, a fully informative signal is optimal when vS(·) is convex,

while a fully uninformative signal is never optimal.

Proof. See the appendix.

If vS(·) is convex, then a fully informative signal maximizes the sender’s expected utility under
any fixed prior ηe. Simultaneously, a fully informative signal maximizes ηe, which also benefits
the sender. For the second result, recall that a fully uninformative signal induces a degenerate
posterior distribution and, therefore, results in e = 0. The sender can do better, for example,
by using a posterior belief distribution supported on {µ, 1}, which induces the agent to choose a
positive effort.

For the general case, let V̂ e denote the maximal attainable value to the sender in the relaxed
problem without (IC):

V̂ e ≡ max
τ∈∆(∆(Ω))

Eτ [vS(µ)] subject to (BP) Eτ [µ] = ηe.

Obviously, V e ≤ V̂ e for any e ≤ e. Let e be the maximal value of e such that V e = V̂ e. Corollary
1 implies that e = 0 if vS(·) is concave, while e = e if vS(·) is convex. If vS(·) is neither concave
nor convex, then e can be found by first solving the relaxed problem and then verifying whether
the resulting optimal distribution of posteriors satisfies (IC).16

The following result shows that the sender prefers e to any e(< e), so it suffices to consider the
effort levels in [e, e]. It also shows that implementing e > e requires a distortion from the relaxed
problem.

16An alternative interpretation of e is as follows: suppose the sender designs, or can revise, a signal after the agent
chooses e. In this case, the sender necessarily adopts an optimal signal in the sense of KG and, anticipating this, the
agent adjusts his effort. e is the maximal effort attainable under such a scenario. This shows that it is the sender’s
power to commit that enables her to implement e ∈ (e, e].
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Proposition 2 In the sender’s problem (3), if e < e, then V e ≤ V e. Furthermore, for any e ∈
(e, e], the solution to (3) has ψ > 0.

Proof. See the appendix.

We apply our characterization to three representative environments. For ease of exposition, we
focus on the case in which µ = 0 and µ = 1. This implies that ηe = eµ + (1 − e)µ = e.17 In
addition, the function h(µ) in (IC) reduces to

h(µ) = Eµ
[
µ(ω)− µ(ω)

ηe(ω)

]
vA(µ)− c′(e)

=

(
(1− µ)

(1− µ)− (1− µ)

1− e
+ µ

µ− µ
e

)
vA(µ)− c′(e) =

µ− e
e(1− e)

vA(µ)− c′(e).

Notice that, since Eτ [µ] = e, (IC) Eτ [h(µ)] = 0 can be rewritten as

Cov[µ, vA(µ)] = e(1− e)c′(e).

Thus, incentive compatibility constrains the covariance between the posterior belief and the agent’s
payoff to a specific value.

4.2 Concave/Linear Preferences

We begin with the case in which the agent’s payoff is linear in the receiver’s belief (i.e., vA(µ) =

µ), while the sender’s payoff vS(·) is strictly increasing, concave, and twice differentiable (i.e.,
v′S(·) > 0 and v′′S(·) < 0). In the grading example (where the school is the sender, a student is the
agent, and the job market is the receiver), this arises if the student cares only about his expected
wage, while the school assigns more weight to underperforming students.

Fix e ∈ (0, e) and consider the Lagrangian function L(µ, ψ) introduced in Theorem 2. Because
vA(·) is linear, h(·) is quadratic, so the second derivative of L with respect to µ is given by

Lµµ ≡
∂2L(µ, ψ)

∂µ2
= v′′S(µ) +

2ψ

e(1− e)
.

Although v′′S(·) < 0, the Lagrangian is not necessarily concave because the second term is positive.
In fact, at the sender’s optimal solution, Lµµ cannot be negative everywhere: if the Lagrangian is
concave, then the optimal signal is degenerate and, therefore, cannot implement e > 0. Conversely,
Lµµ cannot be positive everywhere either: if the Lagrangian is convex, then the optimal signal is

17Strictly speaking, µ = 0 and µ = 1 do not have full support. However, for any e ∈ (0, 1), the prior belief ηe = e
does have full support. Therefore, Lemma 1 and the subsequent characterization apply to these cases unchanged.
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Figure 3: Both panels depict the Lagrangian function L(µ, ψ). In the left panel v′′′S (·) < 0, while
in the right panel v′′′S (·) > 0.

fully informative and implements e (see Proposition 1). Therefore, Lµµ must have both positive
and negative regions, and the Lagrangian must have at least one point of inflection.

A sharp result can be derived if Lµµ is monotone. In this case, L cannot have more than one
inflection point and must have at least one at the optimum. Furthermore, the change in curvature
at the inflection point does not depend on ψ. Thus, if v′′′S (·) < 0 (resp. v′′′S (·) > 0), then L switches
once from convex to concave (resp. concave to convex) at the optimum. Applying Theorem 2, it
follows that the optimal distribution is supported on two posterior beliefs, one of which must be
either 0 or 1 (see Figure 3)

Proposition 3 Consider the binary-state model with v′′S(·) < 0 and vA(µ) = µ.

(i) If v′′′S (·) < 0, then the optimal distribution of posteriors that implements e ∈ (0, e) is sup-

ported on {0, µU} with τ e(µU) = e/µU , where µU ≡ e+ (1− e)c′(e).

(ii) If v′′′S (·) > 0, then the optimal distribution of posteriors that implements e ∈ (0, e) is sup-

ported on {µD, 1} with τ e(µD) = (1− e)/(1− µD), where µD ≡ e(1− c′(e)).

For an economic intuition, notice that if vA(µ) = µ then h(µ) simplifies to

h(µ) =
µ(µ− e)
e(1− e)

− c′(e).

Since Eτ [µ] = e (due to (BP)),

Eτ [h(µ)] =
Eτ [µ(µ− e)]
e(1− e)

− c′(e) =
Var(µ)

e(1− e)
− c′(e) = 0⇔ Var(µ) = e(1− e)c′(c).

In other words, (IC) constrains the variance of the posterior belief to a specific value, while (BP)
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constrains the mean to e. This means that our search for an optimal signal reduces to finding the
posterior distribution that maximizes the sender’s expected payoff among those with a particular
mean and variance.

The sender’s problem is identical to the decision problem under uncertainty studied by Menezes
et al. (1980). They formalize the notion of downside risk (how an individual perceives a small
probability of big losses) and show that it is determined by the third derivative of von Neumann-
Morgenstern utility function: if v′′′S (·) > 0 then the decision-maker (sender) is downside risk averse
and always prefers to shift all necessary dispersion to the top of the distribution, while compressing
the bottom as much as possible.18 In our sender’s problem, this manifests as the optimality of a
binary distribution whose larger realization is 1. Conversely, if v′′′S (·) < 0, then the decision-maker
(sender) is downside risk loving and prefers to shift all necessary dispersion to the bottom of the
distribution, resulting in a binary distribution whose smaller realization is 0.

4.3 Identical Concave Preferences

We now consider an environment in which the sender and the agent have identical concave pref-
erences. Specifically, vS(µ) = vA(µ) = v(µ) with v′′(·) < 0. This perfect alignment of interests
arises if the school and the student have purely common interests in the grading example, or if the
sender is a monopolist who designs a signal to maximize the agent’s expected payoff, which she
then extracts by charging a fixed fee.

The analysis is similar to that of Section 4.2. Given a target effort e ∈ (0, e),

Lµµ = v′′(µ) + ψ
2v′(µ) + (µ− e)v′′(µ)

e(1− e)
.

Since e = 0 (due to the sender’s concave preferences), ψ > 0 for any e > 0 (see Proposition 2). It
then follows that

Lµµ > 0⇔ e(1− e− ψ)

2ψ
+
µ

2
<

1

r(µ)
,

where r(µ) ≡ −v′′(µ)/v′(µ) is the Arrow-Pratt measure of risk aversion. As in Section 4.2, at the
sender’s solution, L should be neither concave nor convex and have at least one inflection point.
Furthermore, if the right-hand side is linear, then the number of inflection points is at most one.
By the same logic as for Proposition 3, we obtain the following result.

18Menezes et al. (1980) define a mean-variance preserving transformation, which combines a mean-preserving
spread over high values with a mean-preserving contraction over low values, while preserving the mean and variance
of the distribution. They show that if an individual is downside risk averse, then he always prefers a mean-variance
preserving transformation, while the opposite is true if an individual is downside risk loving.
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Proposition 4 Consider the binary-state model in which the sender and the agent have identical

HARA (Hyperbolic Absolute Risk Aversion) preferences: for any µ ∈ [0, 1], vS(µ) = vA(µ) = v(µ)

and 1/r(µ) = αµ+ β for some (α, β).

(i) If α < 1/2, then the optimal distribution of posteriors that implements e ∈ (0, e) is supported

on {0, µU}, with τ(µU) = e/µU .

(ii) If α > 1/2, then the optimal distribution of posteriors that implements e ∈ (0, e) is supported

on {µD, 1}, with τ(µD) = (1− e)/(1− µD).

4.4 Discrete/Linear Preferences

In our final example, vS(·) is a step function at θ ∈ (0, 1) (vS(µ) = I(µ ≥ θ)), while vA(·) is
linear. Then, the agent has a constant marginal benefit to increase the receiver’s belief, while the
sender would like this belief to be just “good enough.” In the grading example, this arises if the
school is concerned only with the fraction of graduates earning wages above a threshold. In order
to reduce the number of cases to consider, we assume that e < θ.

Unlike in the previous cases, vS(·) is neither convex nor concave, which allows for the possi-
bility that e ∈ (0, e). In the absence of moral hazard, for any ηe < θ, it is optimal for the sender
to use a binary posterior distribution supported on {0, θ}. It follows that the unique incentive-free
effort level e is given by the value that satisfies

Eτ [h(µ)] =
θ(θ − e)
e(1− e)

τ(θ) =
θ − e
1− e

− c′(e) = 0.

From now on, we restrict attention to e ∈ (e, e).
Given the preferences of the sender and the agent,

L(µ, ψ) =

 ψ
(

(µ−e)µ
e(1−e) − c

′(e)
)

if µ < θ,

1 + ψ
(

(µ−e)µ
e(1−e) − c

′(e)
)

if µ ≥ θ.

Thus, L is a quadratic function of µ, with an upward jump discontinuity of 1 at µ = θ (see Figure
4). Because L is convex over [0, θ) and over [θ, 1], there are three ways in which the supporting
line λ0 +λ1µ can intersect L(µ, ψ). The intersections can occur (i) at µ = 0 and θ, (ii) at µ = 0 and
1, or (iii) at µ = 0, θ, and 1. However, (i) implements e (as explained above), while (ii) implements
e (Proposition 1). Therefore, (iii) is the only possibility; that is, at the sender’s optimal solution,
the supporting line must intersect L(·, ψ) at all three points, {0, θ, 1}, as shown in Figure 4.
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Figure 4: The step function represents vS(µ) = I{µ≥θ}, while the solid curve depicts L(µ, ψ) when
vA(µ) = µ. In this figure, θ = 0.5, e = 0.35, and c(e) = e2.

Proposition 5 In the binary-state model with vS(µ) = I{µ ≥ θ}, vA(µ) = µ, and c′(θ) > 1, for

any e ∈ (e, e), the optimal distribution of posteriors τ e is supported on {0, θ, 1}, where

τ e(0) = (1− e)(1− τ e(θ)), τ e(θ) =
e(1− e)(1− c′(e))

θ(1− θ)
, and τ e(1) = e− τ e(θ)θ.

Proof. The result on the use of three posteriors follows from the discussion above. The probabil-
ities of each realization can be calculated from the following three equations: (i) τ e(0) + τ e(θ) +

τ e(1) = 1, (ii) (BP) Eτe [µ] = e, and (iii) (IC) Eτe [h(µ)] = 0.

This result demonstrates that the result on the maximal number of necessary posteriors in The-
orem 1 is binding in the binary-state model. As shown in the previous subsections, it is often the
case that a binary signal is optimal with binary states. However, as Proposition 5 shows, three
distinct posteriors (equivalently, three signal realizations) may be necessary in our model, which is
never the case in the absence of moral hazard.

5 Binary Actions

In this section, we analyze another tractable environment in which there are only two actions
available to the receiver. The sender has aligned interests with the receiver, but the agent prefers
one action to the other.19 As an example, suppose that the the receiver is a representative voter who
solely decides whether to keep the status quo or adopt a new policy. The agent is a politician who

19In an earlier version, we analyzed the case in which the sender’s preferences are aligned with those of the agent.
The results of this section can be adapted to that case in a straightforward manner.
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exerts effort to improve the new policy but stands to benefit only if the new policy is implemented.
Information about the realized state is communicated to the general public by an independent
and impartial news media, which seeks to maximize the payoff of the representative voter. As in
Gehlbach and Sonin (2014) and Gentzkow et al. (2015), the news media commits to a reporting
strategy {πω(·)}ω∈Ω, which is observed by the representative voter and the politician.20 With this
interpretation, the media’s role is not only to inform citizens, but also to incentivize the politician.21

5.1 The Model

Setup. The receiver (representative voter) decides whether to take action x0 (status quo) or x1

(reform). If she selects x0, then her payoff is θ(> 0), regardless of the state. If she selects x1,
then she obtains a benefit of vω in state ω. Without loss of generality, the states are ordered so that
v1 = 0 < v2 < ... < vN and vN > θ. The sender’s (news media) payoff is identical to that of
the receiver (representative voter). The agent’s (politician’s) payoff depends only on the receiver’s
action, and he prefers x1: he receives 0 if x = x0 and 1 if x = x1.

The receiver chooses x1 if and only if Eµ[vω] =
∑

ω µ(ω)vω ≥ θ. Therefore, the sender’s and
the agent’s payoffs as functions of the posterior belief µ are respectively given by

vS(µ) = max{Eµ[vω], θ} and vA(µ) =

{
1, if Eµ[vω] ≥ θ,

0, if Eµ[vω] < θ.

For i ∈ {0, 1}, we let Xi(⊂ ∆(Ω)) denote the set of beliefs with which the receiver selects xi. In
addition, we refer to states ω such that vω < θ as rejection states and states such that vω ≥ θ as
acceptance states. Finally, we let ωr denote the largest rejection state.

Assumptions. We assume that µ, µ ∈ X0. This ensures that if the sender provides no infor-
mation, then the receiver never chooses x1, regardless of the agent’s effort; that is, information
provision is necessary for persuasion.22 For ease of exposition, we make four additional assump-
tions on µ and µ.

Assumption 1 Monotone likelihood ratio property: µ(ω)/µ(ω) is strictly increasing in ω.

This assumption ensures that higher states are more likely to be realized when the agent exerts
greater effort. Notice that, since both µ and µ are probability vectors, µ(ω)/µ(ω) crosses 1 once

20Alonso and Câmara (2016) consider a related Bayesian Persuasion problem in which the politician’s effort is
exogenous and she communicates directly with the representative voter.

21It has long been recognized that the news media has an essential function as government watchdog, with a “clear,
instrumental role in preventing corruption, financial irresponsibility, and underhanded dealings” (Sen, 2001, p. 40).

22If µ /∈ X0 then the problem becomes trivial because the receiver always prefers to take x1. The assumption
µ ∈ X0 is sufficient, but not necessary, for the results in this section but simplifies the technical analysis.
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from below. Let ωe denote the largest ω such that µ(ω) > µ(ω). As the agent exerts more effort,
states ω ≤ ωe are less likely to be realized, while states ω > ωe are more likely to be realized.23

We therefore refer to ω ≤ ωe as effort-negative and ω > ωe as effort-positive.

Assumption 2 All acceptance states are effort-positive: ωe ≤ ωr.

This assumption implies that an increase in effort increases the probability of all acceptance states
(above ωr). In the case of strict inequality, additional effort also increases the probability of some
rejection states (between ωe and ωr).

Assumption 3 With prior µ, ruling out effort-negative states induces acceptance:∑
ω>ωe

µ(ω)vω∑
ω>ωe

µ(ω)
≥ θ ⇐⇒

(
0, ..., 0, µ(ωe + 1), ..., µ(N)

)∑
ω>ωe

µ(ω)
∈ X1.

This assumption states that starting with the worst prior belief µ, if all effort-negative states are
ruled out, then the resulting posterior belief induces the receiver to select x1.24 This assumption is
not essential, but streamlines the exposition considerably by reducing the number of equilibrium
cases.

Assumption 4 The agent’s marginal cost is sufficiently high:∑
ω>ωe

(µ(ω)− µ(ω)) < c′(1).

This is a technical assumption that corresponds to c′(1) > µ−µ in the binary-state model, ensuring
that the agent’s effort is always less than one. The specific form is clarified shortly.

5.2 Incentive-free and Implementable Efforts

Because the sender’s payoff is convex in the belief, in the absence of moral hazard, it is optimal
for the sender to fully reveal the realized state.25 Clearly, if a signal is fully informative, then the
receiver takes action x1 if and only if ω > ωr. Since the agent receives 1 if the receiver takes x1

23The probability that state ω is realized given effort e is eµ(ω) + (1− e)µ(ω). Thus, an increase in effort reduces
the probability of state ω if and only if µ(ω) > µ(ω), or equivalently, ω ≤ ωe.

24From Assumption 2, the effort-negative states may be a strict subset of the rejection states, and thus eliminating
them leaves a posterior belief that is supported on all acceptance states and some rejection states. The essence of the
assumption is that even under the worst prior belief µ, eliminating the effort-negative states places enough weight on
the acceptance states to induce x1.

25In fact, it suffices to distinguish between rejection and acceptance states. Therefore, instead of a fully revealing
signal, a binary signal that reveals whether ω ≤ ωe or ω > ωe can be employed.
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and 0 otherwise, his problem can be written as

max
e

∑
ω>ωr

(eµ(ω) + (1− e)ω)− c(e).

Solving this problem leads to the following characterization of the incentive-free effort level e.

Lemma 2 In the binary-action model, there exists a unique incentive-free effort level e ∈ (0, e),

which is characterized by ∑
ω>ωr

(µ(ω)− µ(ω)) = c′(e).

Effort e is implemented by a fully informative signal.

Recall that in the binary-state model of Section 4, a fully informative signal implements the
maximal effort e, not the incentive-free effort e. The following proposition characterizes the max-
imal implementable effort e in the current binary-action model and also show that any e < e is
implementable.

Proposition 6 In the binary-action model, e is implementable if and only if e ≤ e, where e is the

value that satisfies ∑
ω>ωe

(µ(ω)− µ(ω)) = c′(e).

Proof. See the appendix.

In the binary-action model, the agent’s incentive to exert effort stems from the possibility that
he can switch the receiver’s action from x0 to x1. Therefore, this incentive is strongest when x1

is selected in all states that are more likely to be realized as the agent puts in more effort (i.e., all
effort-positive states, ω > ωe) and only in such states. The binary signal which perfectly distin-
guishes between effort-positive and effort-negative states (not between acceptance and rejection
states) has this property.

An immediate corollary is that a fully informative signal implements the maximal effort e if

and only if ωe = ωr. This reveals the main tension between information and incentive provision in
the binary-action model. Because the sender’s payoff is convex in the receiver’s belief, the sender
would like to reveal all information in the absence of moral hazard. However, whenever ωr 6= ωe,
the sender can increase the agent’s effort by reducing signal informativeness, transmitting the good
message in all effort-positive states, not just the acceptance states. Therefore, the tension between
incentive and information provision in the binary-action model operates in the opposite direction

from the binary-state model. In the binary-state model, effort is maximized by a fully informative
signal, while the solution in the absence of moral hazard may not be fully informative (at least
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in the cases of interest). In contrast, in the binary-action model, effort is maximized by a signal
that is not fully informative, while the solution in the absence of moral hazard is fully informative.
By implication, in the binary-action model, inducing effort higher than e requires the principal to
reduce signal informativeness.

5.3 Optimal Signal

We proceed to characterize the optimal binary signal that implements e ∈ (e, e). This incurs no loss
of generality for optimal information design, because with binary actions, the number of induced
posteriors (|supp(τ)|) does not need to exceed |X| = 2. The set of posterior belief realizations
can always be partitioned into two subsets, those in X0 and those in X1. Since X0 and X1 are
convex, and within Xi, the sender’s payoff is linear in the belief, replacing each subset with a
single realization at its center of mass does not change the sender’s expected payoff. Furthermore,
because both (BP) and (IC) are linear in µ, the value attained by the constraints is also unaffected
by this transformation.

It is convenient to partition [e, e] as follows: for each ωe ≤ k ≤ ωr, let ek denote the unique
value that satisfies ∑

ω>k

(µ(ω)− µ(ω)) = c′(ek).

The left-hand side is the marginal benefit of effort under a signal that distinguish between ω ≤ k

and ω > k. Therefore, ek is the effort level induced by such a signal. Lemma 2 implies that
eωr = e (because the optimal signal for e reveals all rejection states), while Proposition 6 implies
that eωe = e (because the effort-maximizing signal reveals all effort-negative states). In addition,
Assumption 1 ensures that the left-hand side decreases in k as long as k ≥ ωe. Thus, for such k,
the sequence ek is decreasing.

The following proposition provides a closed-form characterization for the optimal signal that
corresponds to each e ∈ [e, e).

Proposition 7 In the binary-action model, for k ∈ {ωe + 1, ..., ωr}, effort e ∈ [ek, ek−1) is opti-

mally implemented by the following binary signal: Σ = {b, g}, and

πω(g) =


0, if ω < k − 1,

s, if ω = k,

1, if ω > k

and πω(b) = 1− πω(g) for all ω ∈ Ω,
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where s ∈ [0, 1) is the value that satisfies

s =
c′(e)− c′(ek)
µ(k)− µ(k)

.

Proof. See the appendix.

The optimal (binary) signal for target effort e ∈ [ek, ek−1) for k ∈ {ωe+1, ..., ωr} is a monotone
partition, which transmits message g in all states greater than k, message b in all states less than
k, and a mixture of g and b in state k. Because message g rules out all effort-negative states, it
induces the receiver to select x1 (see Assumption 3). Conversely, upon observing message b, the
receiver infers that the realized ω is a rejection state, so he selects x0. The optimal signal varies
continuously and systematically with the target effort. In particular, as the target effort increases
within [ek, ek−1), the probability of transmitting message g in state k increases, from 0 at e = ek

to 1 at e = ek−1. Thus, providing the agent with incentives requires the sender to transmit g (and
select action x1) in an interval of effort-positive rejection states (k ≤ ω ≤ ωr), where she would
prefer to transmit b (and select action x0) if the agent’s incentives were irrelevant. Because such
states are effort-positive, transmitting g increases the marginal benefit of effort for the agent, but
because these are also rejection states, transmitting message g (and selecting x1) also imposes a
cost on the sender.

In general, determining whether to transmit g in an effort-positive rejection state ω requires the
sender to compare the beneficial impact on incentive provision to the harmful payoff consequences.
Message g is optimally transmitted in states where the impact on incentives is large and the impact
on the sender’s payoff is small. In our context, the monotone likelihood ratio property (Assumption
1) ensures that transmitting message g in a higher state simultaneously generates a larger impact
on incentives and a smaller payoff cost for the sender. By implication, if it is optimal for the sender
to transmit g in some state ω, then it is also optimal to do so in all larger states, generating the
monotone partition structure of the optimal signal.

6 Discussion

This section addresses two economic questions that are particularly relevant to our model, one on
the effects of transparency regarding the agent’s effort choice and the other on the effects of moral
hazard on the informativeness of the optimal signal.
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6.1 The Effects of Transparency

In our model, the agent’s effort is unobservable, so the sender can incentivize the agent’s effort
only by adopting an informative signal. If the agent’s effort is observable by the receiver, then this
is no longer the case. The following example shows that transparency can completely resolve the
incentive-provision problem.

Example 1 Consider a binary-state environment in which µ = 0, µ = 1, and vA(µ) = µ (as in

Sections 4.2 and 4.4). If the agent’s effort is observable by the receiver, then the agent’s problem

reduces to

max
e

Eτ [vA(µ)]− c(e) = Eτ [µ]− c(e) = e− c(e),

whose unique optimal solution is given by e, as defined in Proposition 1. Importantly, this holds

for any signal structure; that is, the agent chooses e regardless of π (or τ ).

In the environment of Example 1, transparency is necessarily beneficial to the sender, as she
can effectively take the (maximal) prior ηe = e as given and focuses on information provision (as
in KG). Somewhat paradoxically, transparency–the receiver’s observability of the agent’s effort–
can be harmful to the receiver. Not being concerned with incentive provision, the sender would
adopt the optimal policy in KG. Therefore, if the sender has concave preferences (i.e., vS(·) is
concave) as in Section 4.2, then the sender would reveal no information. Although the agent’s
effort is higher, the receiver obtains less information about the state, which may make him worse
off overall. Similarly, if the sender has discrete preferences (i.e., vS(µ) = I(µ ≥ θ)) as in Section
4.4, then she would choose a binary signal that induces only posteriors 0 and θ. Again, although
the agent chooses the maximal effort e, the receiver’s payoff can be lower when he can observe the
agent’s effort than when he cannot.26

Outside of Example 1, even the effect of transparency on the agent’s equilibrium effort is not
clear-cut, as demonstrated in the following example.

Example 2 Suppose, as in Section 4.3, the sender and the agent have common concave prefer-

ences, and the sender also internalizes the agent’s effort cost.27 In particular, assume that µ = 0,

µ = 1, vS(µ) = vA(µ) = 1− (1− µ)2, and c(e) = ce2/2 for some c ∈ (2/3, 1).

26To be specific, suppose the sender has discrete preferences as in Section 4.4 and the receiver’s payoff as a function
of his belief µ is given by max{µ − θ, 0}; for example, the receiver has a binary action and faces the usual trade-off
between Type I and Type II errors. Then, the receiver’s expected payoff is equal to 0 with transparency, while his
expected payoff is strictly positive without transparency (because, as shown in Section 4.4, posterior belief µ = 1 is
realized with positive probability).

27To be precise, the sender’s underlying utility function uS now depends on the agent’s effort but not on the state,
that is, uS(x, e) = uA(x) − c(e). The assumption that the sender internalizes the agent’s effort cost plays no role in
the characterization of the optimal signal. However, it does affect the sender’s optimal effort choice.
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If the agent’s effort is unobservable then, by Proposition 4, the optimal signal induces pos-

teriors 0 and µU (because 1/r(µ) = 1 − µ in this case). Using the equilibrium conditions that

Eτ [µ] = e and Eτ [h(µ)] = 0, one can find that the sender’s optimal signal is such that

µU = e+ ce(1− e), τ(µU) =
e

e+ ce(1− e)
, and V e = (2− e− ce(1− e))e− c

2
e2.

From this explicit solution, it is immediate that the optimal effort is 2/(3c).

Now suppose the agent’s effort is observable by the receiver. Since the agent and the sender

have identical preferences, the problem reduces to:

max
e,τ

Eτ [vA(µ)]− c(e) subject to Eτ [µ] = e.

Since vA(·) is concave, given any e, it is optimal to reveal no information. Thus, the objective

function can be further simplified to vA(e)−c(e) = 1−(1−µ)2−ce2/2, for which the equilibrium

effort is given by

v′(e) = 2− 2e = c′(e) = ce⇒ e =
2

2 + c
.

Importantly, this equilibrium effort 2/(2 + c) exceeds 2/(3c) for any c ∈ (2/3, 1).

In this example, transparency reduces both the agent’s effort and the signal informativeness.

Therefore, it is unambiguously harmful to the receiver.

6.2 Moral Hazard and Signal Informativeness

Our motivating example in the introduction and Corollary 1 in Section 4 suggest that in the pres-
ence of moral hazard (i.e., if the agent must be incentivized to exert effort) the sender should
employ a more informative signal than when the prior is exogenously given. Although intuitive,
this is not generally true: recall that in our binary-action model of Section 5, a fully informative
signal is always optimal if the prior is exogenously given, but it cannot be used (i.e., some informa-
tion must be withheld) to implement e ∈ (e, e]. Still, the intuitive result–that moral hazard forces
the sender to provide more information–does hold for a class of binary-state environments, as we
demonstrate now.

We begin by defining the “Lagrangian Single Inflection” (LSI) property.

Definition 1 The payoff functions (vS(·), vA(·)) have the LSI-A (LSI-B) property if for any fixed

ψ ≥ 0, Lµµ(·, ψ) crosses zero at most once, and the crossing is from above (below).

This definition formalizes the property of the Lagrangian that was exploited in Sections 4.2
and 4.3. As before, when it holds, the Lagrangian has at most one inflection point. Furthermore,
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LSI-A(B) guarantees that at the inflection point the switch is from convex to concave (concave to
convex). Though this definition is formulated in terms of the Lagrangian, it is easy to check in a
variety of settings beyond those already discussed.28

In general, the LSI property does not imply that the sender’s payoff function is globally con-
cave, so it is possible that e > 0. Furthermore, except in the case where the sender’s payoff is
globally convex, e < e. Exploiting the logic underlying Propositions 3 and 4, we have the follow-
ing generalization.

Lemma 3 Consider the binary-state model.

(i) If (vS(·), vA(·)) satisfy LSI-A, then the optimal distribution of posteriors that implements

e ∈ (e, e) is supported on {0, µU} with τ e(µU) = e/µU , where µU ≡ e+ (1− e)c′(e).

(ii) If (vS(·), vA(·)) satisfy LSI-B, then the optimal distribution of posteriors that implements

e ∈ (e, e) is supported on {µD, 1} with τ e(µD) = (1−e)/(1−µD), where µD ≡ e(1−c′(e)).

The following result shows that if the LSI property holds (whether A or B), the sender neces-
sarily adopts a more informative signal in our model than she would do in KG.

Proposition 8 In the binary-state model, if the LSI property holds, then the optimal signal associ-

ated with target effort e ∈ (e, e) is more informative in the Blackwell sense than the optimal signal

in the benchmark model with exogenous prior ηe.

Proof. See the appendix.

Intuitively, for e > e, the optimal signal in the benchmark with an exogenous prior violates
incentive compatibility, and thus, to incentivize effort the sender must adjust the signal in some
way. With binary states and LSI, the set of adjustments that could be optimal is limited—it is only
ever optimal for the sender to garble information about one of the states. The essence of the proof
is to show that the adjustment required by incentive compatibility always results in an increase in
signal informativeness.

7 Conclusion

In this paper, we studied Bayesian persuasion when the prior about the underlying state is generated
by an agent’s unobservable effort, so the sender is concerned with both information provision and

28For example, the LSI property holds in the following environments: (i) If S (the sender) and A (the agent) have
identical IARA preferences, then LSI-A holds. (ii) If vi(µ) = (1 − exp(−ρiµ)/(1 − exp(−ρi)) (CARA) for both
i = S,A and ρA ≥ ρS > 0, then LSI-A holds. (iii) If vi(µ) = µ1−ρi (CRRA) for both i = S,A and ρA ≤ ρS < 1,

then LSI-B holds. (iv) Suppose for both i = S,A, vi(µ) =
(µ+µ)1−ρi−µ1−ρi

(1+µ)1−ρi−µ1−ρi , where µ > 0 (HARA). If ρA > 2 and
ρS ≤ ρA, then LSI-A holds. If ρA < 2 and ρS ≥ ρA, then LSI-B holds.
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incentive provision. We showed that the sender’s problem can be analyzed by extending the con-
cavification technique in Aumann and Maschler (1995) and KG, and provided a useful necessary
and sufficient condition for an optimal signal (Section 3). We applied the general characterization
to two tractable environments, one with binary states (Section 4) and the other with binary receiver
actions (Section 5), and derived a number of concrete and economic implications. We also showed
that transparency, which allows the receiver to observe the agent’s effort, may reduce the informa-
tiveness of the equilibrium signal and harm the receiver, and provided a sufficient condition under
which moral hazard forces the sender to provide more information than she would do otherwise
(Section 6).

Appendix: Omitted Proofs

Continuation of Proof of Theorem 1. For the result on the cardinality of the support of τ e, we
present a slightly different but equivalent construction. Note that the dimension of (BP) can be
reduced by 1. In particular, since µ, ηe ∈ ∆(Ω), if (BP) is satisfied for any N−1 components, then
it is also satisfied for the remaining component. Therefore, consider the following curve inRN+1:

Ke ≡ {(µ(2), ..., µ(N), h(µ), vS(µ)) : µ ∈ ∆(Ω)},

and let co(Ke) denote its convex hull. As in the text, y ∈ co(Ke) if and only if there exists a
distribution of posteriors τ such that y = (Eτ [µ(2)], ...,Eτ [µ(N)],Eτ [h(µ)],Eτ [vS(µ)]). V e =

maxv{v : (ηe(2), ..., ηe(N), 0, v) ∈ co(Ke)}. Because the graphs of h(·) and vS(·) are closed,
Ke is closed, and hence, co(Ke) is closed. Thus, (ηe(2), ..., ηe(N), 0, V e) is on the boundary of
co(Ke). By Caratheodry’s theorem, any vector that belongs to the boundary of the convex hull of
a set Y in RN+1 can be written as a convex combination of no more than N + 1 elements of Y .
Hence, (ηe(2), ..., ηe(N), 0, V e) can be made of at most N + 1 elements in Ke.

Continuation of Proof of Theorem 2. Necessity. Given the partial proof in the main text,
it suffices to show that L(µ, ψ) = λ0 + 〈λ1, µ〉 for all µ such that τ e(µ) > 0. Suppose that
L(µ′, ψ) < λ0 + 〈λ1, µ

′〉 for some µ′ such that τ e(µ′) > 0. Because L(µ, ψ) ≤ λ0 + 〈λ1, µ〉 for
all µ ∈ ∆(Ω), it follows that Eτe [L(µ, ψ)] < λ0 + 〈λ1,Eτe [µ]〉 = λ0 + 〈λ1, ηe〉. Using (IC) on the
left hand side, V e < λ0 + 〈λ1, ηe〉. Rearranging the terms, 〈d, (ηe, 0, V e)〉 < λ0, which contradicts
〈d, (ηe, 0, V e)〉 = λ0.

Sufficiency. If vS(µ) + ψh(µ) ≤ λ0 + 〈λ1, µ〉 for all µ ∈ ∆(Ω), then for any τ ,

Eτ [vS(µ)] + ψEτ [h(µ)] ≤ λ0 + Eτ [〈λ1, µ〉].
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If τ satisfies both (BP) and (IC), then Eτ [vS(µ)] ≤ λ0 + 〈λ1, ηe〉. If τ e is such that L(µ, ψ) =

λ0 + 〈λ1, µ〉 for any τ e(µ) > 0, then Eτe [vS(µ)] = λ0 + 〈λ1, ηe〉, that is, τ e achieves the upper
bound of the sender’s expected utility. Thus, it is optimal.

Proof of Proposition 1. We first show that e is the upper bound to the set of implementable effort
levels. Under any signal π, the agent chooses e to maximize

(e(1− µ) + (1− e)(1− µ))E[vA(µ)|ω = 1] + (eµ+ (1− e)µ)E[vA(µ)|ω = 2]− c(e).

The first two terms are linear in e, while c(e) is strictly convex. Therefore, the optimal effort level
is determined by

(µ− µ)(E[vA(µ)|ω = 2]− E[vA(µ)|ω = 1]) = (µ− µ)
∑
s

(π2(s)− π1(s))vA(µs) = c′(e).

Since vA is weakly increasing,

(µ− µ)

(∑
s

π2(s)vA(µs)−
∑
s

π1(s)vA(µs)

)
≤ (µ− µ) (vA(1)− vA(0)) = µ− µ.

It follows that e such that c′(e) > µ− µ, which is equivalent to any e > e, is not implementable.
Fix e ∈ [0, e], and consider the following distribution of posteriors, which can be interpreted as

a convex combination of a fully informative signal and a fully noisy signal:

τ(0) = (1− ηe)
c′(e)

µ− µ
, τ(ηe) = 1− c′(e)

µ− µ
, τ(1) = ηe

c′(e)

µ− µ
.

This distribution is well-defined, because ηe ∈ [µ, µ] and c′(e) ≤ c′(e) < µ−µ. It is easy to verify
that this distribution satisfies both (BP) and (IC) and, therefore, e is implementable.

The final result that e is implementable if and only if the signal is fully informative follows
from the argument given in the main text.

Proof of Corollary 1. The first (convex) result is immediate from the fact that e = e if vS is
convex. For the second (concave) result, notice that if vS is concave then e = 0, so if the sender
adopts an uninformative signal then the sender’s expected utility is equal to vS(µ). Consider an
alternative signal that induces either µ or 1. Under the assumption that vA(µ) < vA(1), the agent
chooses a strictly positive effort level. Therefore, the sender’s expected payoff satisfies

Eτ [vS(µ)] = τ(µ)vS(µ) + τ(1)vS(1) > vS(µ).
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This proves that an uninformative signal is never optimal for the sender.

Proof of Proposition 2. The result that V e ≥ V e for any e ≤ e is immediate from the fact that
V̂ e is increasing in e (due to monotone vS(µ)), V e ≤ V̂ e for any e, and V e = V̂ e.

We now prove that at the optimal solution, ψ > 0 whenever e > e. For e ∈ (e, e), let τ̂
denote the solution to the sender’s relaxed problem and V̂ e denote the corresponding seller payoff.
Applying Theorem 2 to the relaxed problem (without (IC) and with ψ = 0), there exist λ̂0 and λ̂1

such that
vS(µ) ≤ λ̂0 + λ̂1µ for all µ ∈ [0, 1], with equality if τ̂(µ) > 0. (4)

Similarly, let τ denote the solution to the sender’s original (unrelaxed) problem and apply Theorem
2. Then, there exist λ0, λ1, and ψ such that

vS(µ) + ψh(µ) ≤ λ0 + λ1µ for all µ ∈ [0, 1], with equality if τ(µ) > 0. (5)

Note that, whereas τ̂(µ) satisfies only (BP), τ(µ) satisfies both (BP) and (IC).
Step 1: We show that if Eτ̂ [h(µ)] < 0 then ψ > 0.

Taking the expectation of (4) with respect to τ , we get

Eτ [vS(µ)] ≤ λ̂0 + λ̂1Eτ [µ] = λ̂0 + λ̂1e.

Doing the same with (5) and using the fact that τ is a solution, we get

Eτ [vS(µ)] + ψEτ [h(µ)] = λ0 + λ1Eτ [µ] = λ0 + λ1e.

Since τ satisfies (IC), Eτ [h(µ)] = 0. Then, it follows

λ0 + λ1e = Eτ [vS(µ)] ≤ λ̂0 + λ̂1e.

Similarly, taking the expectations of (4) and (5) with respect to τ̂ , we obtain

Eτ̂ [vS(µ)] = λ̂0 + λ̂1e and Eτ̂ [uS(µ)] + ψEτ̂ [h(µ)] ≤ λ0 + λ1e,

leading to
λ̂0 + λ̂1e+ ψEτ̂ [h(µ)] = Eτ̂ [uS(µ)] + ψEτ̂ [h(µ)] ≤ λ0 + λ1e.

Combining the two derived inequalities, it follows that

ψEτ̂ [h(µ)] ≤ (λ0 + λ1e)−
(
λ̂0 + λ̂1e

)
≤ 0.
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Clearly, Eτ̂ [h(µ)] < 0 implies ψ ≥ 0. Strict inequality follows from the fact that if ψ = 0 then
τ = τ̂ and, therefore, V̂ e = V e, which contradicts e > e.
Step 2: We now show that if e ∈ (e, e) then Eτ̂ [h(µ)] < 0.

If Eτ̂ [h(µ)] = 0, then τ̂ = τ , which cannot be the case for e ∈ (e, e). Therefore, it suffices to
show that it cannot be that Eτ̂ [h(µ)] > 0. Toward a contradiction, suppose Eτ̂ [h(µ)] > 0.

Case 1: Suppose that there exists another solution τ̂ ′ such that Eτ̂ ′ [h(µ)] < 0. Because (BP) is
convex, for any w ∈ [0, 1] the posterior distribution τw = wτ̂ + (1−w)τ̂ ′ is feasible. Furthermore,
Eτw [vS(µ)] = wEτ̂ [vS(µ)] + (1− w)Eτ̂ ′ [vS(µ)] = V̂ e, which means that τw is also optimal in the
relaxed problem. Next, note that Eτw [h(µ)] = wEτ̂ [h(µ)] + (1 − w)Eτ̂ ′ [h(µ)], and hence, there
exists some w∗ ∈ (0, 1) such that Eτw∗ [h(µ)] = 0, that is, (IC) is satisfied. This implies that τw∗ is
an optimal solution to the sender’s original problem, which contradicts e > e.

Case 2: Suppose that for all solution(s) of the relaxed problem, Eτ̂ [h(µ)] > 0. Note that that
any solution to the relaxed problem must induce at least two posteriors: if a signal is degenerate,
then it must put all mass on µ = e and, therefore, Eτ̂ [h(µ)] = −c′(e) < 0. In addition, there must
exist µL < e < µH such that τ̂(µL) > 0 and τ̂(µH) > 0: otherwise, (BP) cannot hold. Now,
applying Theorem 2 to the relaxed problem, we have

λ̂0 + λ̂1µ ≥ vS(µ) for all µ, with equality if µ = µL, µH . (6)

For each ẽ ∈ [e, µH ], consider the following distribution, which clearly satisfies (BP):

τ̃(µH) =
ẽ− µL
µH − µL

and τ̃(µL) =
µH − ẽ
µH − µL

.

Since (6) applies regardless of ẽ, τ̃ is an optimal solution to the sender’s relaxed problem. Next,
observe that with ẽ,

Eτ̂ [h(µ)] =
1

ẽ(1− ẽ)

( µH − ẽ
µH − µL

(µL − ẽ)vA(µL) +
ẽ− µL
µH − µL

(µH − ẽ)vA(µH)
)
− c′(ẽ).

By assumption, with any solution to the relaxed problem, Eτ̂ [h(µ)] > 0. To the contrary, it is clear
from direct substitutions that if ẽ = µH then Eτ̂ [h(µ)] < 0. Since Eτ̂ [h(µ)] continuously changes
in ẽ, there must exist e∗ ∈ (e, µH) such that the solution to the relaxed problem satisfies (IC),
that is, τ̃ is a solution to the sender’s original problem. This implies that V (e∗) = V̂ (e∗), which
contradicts e∗ > e > e.

Proof of Proposition 6. We prove Proposition 6 in three steps.
Step 1: e > e cannot be implemented.

Fix any signal structure π. Let Σ+ denote the subset of Σ such that in the equilibrium of the
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subgame between the agent and the receiver, µs ∈ X1 if and only if s ∈ Σ+; that is, Σ+ includes
all signal realizations that induce the receiver to take action x1 given π and the agent’s equilibrium
effort e. In a slight abuse of notation, let πω(Σ′) denote the probability that the signal realization
belongs to Σ′ (i.e., πω(Σ′) =

∑
s∈Σ+ πω(s)). Then, the agent’s expected payoff of exerting effort e

is given by ∑
ω

ηe(ω)πω(Σ′)− c(e) =
∑
ω

(eµ(ω) + (1− e)µ(ω))πω(Σ′)− c(e).

Therefore, the agent’s (interior) optimal effort satisfies∑
ω

(µ(ω)− µ(ω))πω(Σ′) = c′(e).

Since πω(Σ′) ∈ [0, 1] for all ω ∈ Ω, the left-hand side is maximized when πω(Σ′) = 0 if µ(ω) <

µ(ω) and πω(Σ′) = 1 if µ(ω) > µ(ω). Since µ(ω) ≥ µ(ω) if and only if ω > ωe (by Assumption
1 and the definition of ωe), we have

c′(e) =
∑
ω

(µ(ω)− µ(ω))πω(Σ′) ≤
∑
ω>ωe

(µ(ω)− µ(ω)) = c′(e).

Since c′(·) is strictly increasing, it is necessarily the case that e ≤ e.
Step 2: Any e ∈ (e, e] is implementable.

Consider the following class of binary signals: Σ = {b, g} and for some k ∈ {ωe + 1, ..., ωr}
and s ∈ (0, 1],

πk,sω (g) =


0, if ω < k,

s, if ω = k,

1, if ω > k,

and πk,sω (b) = 1− πk,sω (g) for all ω ∈ Ω.

By the structure of the binary signal, we have

µb =
(ηe(1), ..., ηe(k − 1), (1− s)ηe(k), 0, ..., 0)∑

ω<k ηe(ω) + (1− s)ηe(k)
and µg =

(0, ..., 0, sηe(k), ηe(k + 1), ..., ηe(N))

sηe(k) +
∑

ω>k ηe(ω)
.

We first show that µb ∈ X0 and µg ∈ X1. The former is immediate from the fact that µb assigns
positive values only to rejection states (ω ≤ k ≤ ωr), so Eµb [vω] ≤ vωr < θ regardless of e. To
show µg ∈ X1, observe that Assumption 1 implies that µg increases in e in the sense of first-order
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stochastic dominance. Therefore, for any e > 0, µg stochastically dominates

µ0
g ≡

(0, ..., 0, sη0(k), η0(k + 1), ..., η0(N))

sη0(k) +
∑

ω>k η0(ω)
=

(
0, ..., 0, sµ(k), µ(k + 1), ..., µ(N)

)
sµ(k) +

∑
ω>k µ(ω)

.

In turn, because k ≥ ωe + 1 and s ∈ [0, 1), µ0
g stochastically dominates

µ
ωe
≡
(
0, ..., 0, µ(ωe + 1), ..., µ(N)

)∑
ω>ωe

µ(ω)
.

By Assumption 3, Eµ
ωe

[vω] > θ. Since µg stochastically dominates µ
ωe

and vω is increasing in ω,
it follows that Eµg [vω] > θ, so µg ∈ X1.

Given the signal structure πk,s, µb ∈ X0, and µg ∈ X1, the agent’s problem reduces to

max
e
sηe(k) +

∑
ω>k

ηe(ω)− c(e).

Since ηe(ω) = eµ(ω) + (1− e)µ(ω) for all ω ∈ Ω, the agent’s optimal effort e satisfies

s(µ(k)− µ(k)) +
∑
ω>k

(µ(ω)− µ(ω)) = c′(e).

The left-hand side continuously decreases from
∑

ω>ωe
(µ(ω)− µ(ω)) to

∑
ω>ωr

(µ(ω)− µ(ω)) as
s decreases from 1 to 0 and k increases by 1 (and s jumps up to 1) once s reaches 0. Since c′(·) is
strictly increasing and continuous, this means that the equilibrium effort e continuously decreases
from e to e.
Step 3: any e ∈ [0, e] is implementable.

Consider the following class of signal structures: for α ∈ [0, 1], Σ = {b, ωr + 1, ..., N},

παω(b) =

{
1, if ω ≤ ωr,

1− α, if ω > ωr,
and παω(ω′) =

{
α, if ω′ = ω,

0, if ω′ 6= ω.

In other words, πα only reveals acceptance states (ω > ωr) with probability α. By construction,
πα implements 0 if α = 0 (as the signal is completely uninformative) and e if α = 1. If s 6= b then
µs is the degenerate distribution at ω > ωr, so µs ∈ X1.

Now we show that µb /∈ X1. Suppose µb ∈ X1. Then, the receiver always takes x1, which
eliminates the agent’s incentive to exert effort. In that case, ηe = µ and

µb =

(
µ(1), ..., µ(ωr), (1− α)µ(ωr + 1), ..., (1− α)µ(N)

)∑
ω≤ωr

µ(ω) + (1− α)
∑

ω>ωr
µ(ω)
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By its structure, µb is stochastically dominated by µ. Therefore, Eµb [vω] < Eµ[vω] < θ, contradict-
ing µb ∈ X1.

Since µb /∈ X1, the agent’s problem is given by

max
e
α
∑
ω>ωr

ηe(ω)− c(e) = α
∑
ω>ωr

(
eµ(ω) + (1− e)µ(ω)

)
− c(e).

Therefore, the agent’s optimal effort e satisfies

α
∑
ω>ωr

(
µ(ω)− µ(ω)

)
= c′(e). (7)

Since c′(·) is strictly increasing and continuous, e continuously increases from 0 to e as α rises
from 0 to 1.

It remains to show that for each α, µb is indeed well-defined in X0. Note that

µb = βηe + (1− β) (ηe(1), ..., ηe(ωr), 0, ..., 0) ,

where
β =

α∑
ω≤ωr

ηe(ω) + (1− α)
∑

ω>ωr
ηe(ω)

∈ [0, 1].

Both ηe and (ηe(1), ..., ηe(ωr), 0, ..., 0) are stochastically dominated by µ and, therefore, belong to
X0. It then follows that µb (their convex combination) also belongs to X0.

Proof of Proposition 7. Notice that the proposed signal is identical to that used in Step 2 in
the proof of Proposition 6. There, we already proved that µb ∈ X0 and µs ∈ X1. The induced
distribution of posteriors triviality satisfies (BP). To show that it also satisfies (IC), recall that the
agent’s equilibrium effort e is characterized by

s(µ(k)− µ(k)) +
∑
ω>k

(µ(ω)− µ(ω)) = c′(e).

By definition,
∑

ω>k(µ(ω)− µ(ω)) = c′(ek). Therefore, (IC) holds when

s(µ(k)− µ(k)) + c′(ek) = c′(e) ⇐⇒ s =
c′(e)− c′(ek)
µ(k)− µ(k)

.

The following claim is useful in what follows.
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Claim 1 For any k ∈ {ωe + 1, ..., ωr} and ω ∈ {1, ..., N}, we have

ω ≷ k ⇒ vω − θ ≷ (vk − θ)
µ(ω)− µ(ω)

ηe(ω)

ηe(k)

µ(k)− µ(k)
.

Proof. Fix k ∈ {ωe + 1, ..., ωr}. Note that since ωe < k ≤ ωr, we have µ(k) > µ(k) and vk < θ.
Consider ω > k. Since k > ωe, µ(ω) > µ(ω), so the desired inequality can be rewritten as

(vω − θ)
ηe(ω)

µ(ω)− µ(ω)
> (vk − θ)

ηe(k)

µ(k)− µ(k)

⇐⇒ (θ − vω)
e(µ(ω)− µ(ω)) + µ(ω)

µ(ω)− µ(ω)
< (θ − vk)

e(µ(k)− µ(k)) + µ(k)

µ(ω)− µ(ω)

⇐⇒ (θ − vω)

e+
1

µ(ω)
µ(ω)
− 1

 < (θ − vk)

e+
1

µ(k)
µ(k)
− 1

 .

This holds for any ω > k, because vω > vk and µ(ω)/µ(ω) > µ(k)/µ(k) (Assumption 1).
Now consider ωe < ω < k. In this case, it suffices to reverse the inequalities in the previous

case; that is, the desired result can be rewritten as

(θ − vω)

e+
1

µ(ω)
µ(ω)
− 1

 > (θ − vk)

e+
1

µ(k)
µ(k)
− 1

 .

As in the previous case, this holds for any ωe < ω < k, because vω < vk and µ(ω)/µ(ω) <

µ(k)/µ(k).
Finally, consider ω ≤ ωe < k. In this case, µ(ω) ≤ µ(ω), so

vω − θ < 0 ≤ (vk − θ)
µ(ω)− µ(ω)

ηe(ω)

ηe(k)

µ(k)− µ(k)
.

We now verify the optimality of the proposed by applying Theorem 2 in three steps.
Step 1: constructing the hyperplane that meets L(µ, ψ) at µb and µg.

Since vS(µ) = max{Eµ[vω], θ}, we have

L(µ, ψ) =

{
θ − ψc′(e), if µ ∈ X0,

Eµ[vω] + ψ
(
Eµ
[
µ(ω)−µ(ω)

ηe(ω)

]
− c′(e)

)
, if µ ∈ X1.
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Consider the following multipliers:

ψ = −(vk − θ)
ηe(k)

µ(k)− µ(k)
, λ0 = −ψc′(e), and λ1(ω) =

{
θ, if ω ≤ k,

vω + ψ
µ(ω)−µ(ω)

ηe(ω)
, if ω > k.

Then, we have

λ0 + 〈λ1, µ〉 = −ψc′(e) +
∑
ω≤k

µ(ω)θ +
∑
ω>k

µ(ω)

(
vω + ψ

µ(ω)− µ(ω)

ηe(ω)

)

= θ − ψc′(e) +
∑
ω>k

µ(ω)

(
vω − θ + ψ

µ(ω)− µ(ω)

ηe(ω)

)
= θ − ψc′(e) +

∑
ω>k

µ(ω)

(
vω − θ − (vk − θ)

ηe(k)

µ(k)− µ(k)

µ(ω)− µ(ω)

ηe(ω)

)

Step 2: λ0 + 〈λ1, µ〉 ≥ L(µ, ψ) for all µ ∈ X0, with equality holding if µ = µb.
If µ ∈ X0 then L(µ, ψ) = θ − ψc′(e). Therefore,

λ0 + 〈λ1, µ〉 ≥ L(µ, ψ) ⇐⇒
∑
ω>k

µ(ω)

(
vω − θ − (vk − θ)

ηe(k)

µ(k)− µ(k)

µ(ω)− µ(ω)

ηe(ω)

)
≥ 0.

By Claim 1, this latter inequality always holds. If µ = µb then it holds with equality, because µb
assigns 0 to all states strictly above k (i.e., µb(ω) = 0 for all ω > k).
Step 3: λ0 + 〈λ1, µ〉 ≥ L(µ, ψ) for all µ ∈ X1, with equality holding if µ = µg.

For µ ∈ X1, we have

L(µ, ψ) =
∑
ω

µ(ω)vω +
∑
ω

µ(ω)ψ
µ(ω)− µ(ω)

ηe(ω)
− ψc′(e)

= θ − ψc′(e) +
∑
ω

µ(ω)

(
vω − θ − (vk − θ)

ηe(k)

µ(k)− µ(k)

µ(ω)− µ(ω)

ηe(ω)

)
.

Therefore, λ0 + 〈λ1, µ〉 ≥ L(µ, ψ) is equivalent to

∑
ω<k

µ(ω)

(
vω − θ − (vk − θ)

ηe(k)

µ(k)− µ(k)

µ(ω)− µ(ω)

ηe(ω)

)
≤ 0.

Again, this inequality follows from Claim 1. As in Step 2, if µ = µg then this holds with equality,
because µg assigns 0 to all states strictly below k (i.e., µg(ω) = 0 for all ω < k).

Proof of Proposition 8. In the proof of Proposition 2 (Step 2), we showed that if e ∈ (e, e), then
in the solution of the relaxed problem where (IC) is ignored, Eτ [h(µ)] < 0. Here we show that
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restoring incentive compatibility requires increasing µU in the case of LSI-A, and reducing µD in
the case of LSI-B. By implication, the distribution of posteriors in the sender’s problem with in-
centive compatibility is a mean preserving spread of the distribution of the posteriors in the relaxed
problem, and it is therefore more informative in the Blackwell sense.

LSI-A. If the underlying environment has the LSI-A property, then the sender’s optimal distri-
bution of posteriors in the relaxed problem is {0, µ̂} with τ(µ̂) = e

µ̂
, and the solution in the full

problem is {0, µ∗} with τ(µ∗) = e
µ∗

. Per Step 2 of Proposition 2, we know that the solution of the
relaxed problem generates a negative value of the IC constraint, i.e.

Eτ [h(µ)] =
e

µ̂

( µ̂− e
e(1− e)

vA(µ̂)
)
< c′(e).

Next, note that for µ ≥ e

e

µ

( µ− e
e(1− e)

vA(µ)
)

=
1

1− e

(
1− e

µ

)
vA(µ)

is a product of two positive, increasing functions of µ, and it is therefore increasing. Furthermore,
the solution of the sender’s full problem satisfies IC. Combining these observations, it follows that
µ∗ > µ̂. Because both the solution of the relaxed problem and the sender’s full problem have the
same mean, and are supported on {0, µ̂} and {0, µ∗} respectively, the solution of the full problem is
a mean preserving spread of the solution to the relaxed problem, and the signal is more informative
in the sense of Blackwell.

LSI-B. If the underlying environment has the LSI-A property, then the sender’s optimal distri-
bution of posteriors in the relaxed problem is {µ̂, 1} with τ(µ̂) = 1−e

1−µ̂ , and the solution in the full
problem is {µ∗, 1} with τ(µ∗) = 1−e

1−µ∗ . Per Step 2 of Proposition 2, we know that the solution of
the relaxed problem generates a negative value of the IC constraint, i.e.

Eτ [h(µ)] =
1− e
1− µ̂

( µ̂− e
e(1− e)

vA(µ̂)
)

+
e− µ̂
1− µ̂

(1

e

)
< c′(e).

Next, note that for µ ≤ e

1− e
1− µ

( µ− e
e(1− e)

vA(µ)
)

+
e− µ
1− µ

(1

e

)
=
( e− µ
e(1− µ)

)
(1− vA(µ)).

is a product of two positive, decreasing functions of µ, and it is therefore decreasing. Furthermore,
the solution of the sender’s full problem satisfies IC. Combining these observations, it follows that
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µ∗ < µ̂. Because both the solution of the relaxed problem and the sender’s full problem have the
same mean, and are supported on {µ̂, 1} and {µ∗, 1} respectively, the solution of the full problem is
a mean preserving spread of the solution to the relaxed problem, and the signal is more informative
in the sense of Blackwell.
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