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Abstract

We study the dynamics of fraud and trust in a continuous-time reputation game.

The principal wishes to approve a real project and reject a fake. The agent is either an

ethical type that produces a real project, or a strategic type that also can produce a

fake. Producing a real project takes an uncertain amount of time, while a fake can be

created instantaneously at some cost. The unique equilibrium features an initial phase

of doubt, during which the strategic agent randomly fakes and the principal randomly

approves. Only submissions that arrive after the phase of doubt are beneficial to

the principal. We investigate three variants of the model that mitigate this problem.

With full commitment, the principal incentivizes the strategic agent to fake at one

specific time and commits to approve. Though the principal knows that earlier arrivals

are real, she commits to reject them with positive probability. When she can delegate

authority, the principal benefits by transferring it to a proxy who is more cautious than

she is. When the principal can conduct a costly test prior to her approval decision,

the principal also benefits. The equilibrium testing probability may be non-monotonic

over time, first increasing, then decreasing. JEL Classifications: C73, D21, D82, L15,

M42.
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1 Introduction

The pursuit of short term advantage can lead to misconduct in numerous settings where

malfeasance is hard to detect; examples are ubiquitous.

• In order to close a lucrative deal, a procurer may be tempted to purchase a counter-

feit good or deal with a banned supplier, as in the case of AEY Inc., which illegally

purchased Chinese munitions in order to fulfill a $300 million order from the United

States government (Lawson, 2011).

• In response to competition from foreign manufacturers selling small, fuel-efficient ve-

hicles in the 1970s, Ford rushed to produce the Pinto, skimping on safety testing, with

disastrous results (Dowie, 1977).

• Facing the risk of a hiring freeze, an academic department or government agency may

be tempted to hire an under-qualified job candidate, rather than risk losing the slot.

In this paper we present and analyze a dynamic principal-agent model of fraud and trust.

The principal has limited commitment power and wishes to approve a real project and reject

a fake one. Real projects and fakes have different arrival processes: real project development

takes a positive and uncertain amount of time, while a fake project can be manufactured

instantaneously at some cost. The agent faces pressure to perform quickly: he is rewarded

when his project is approved, and he is impatient. The agent is of two possible types. Both

types have the same ability to develop a real project, but they differ in their willingness or

capacity to commit fraud. An ethical type is unwilling or unable to produce a fake, while a

strategic type would do so immediately if he believed it would be approved. In our baseline

model, real projects and fakes are indistinguishable by the principal. All she observes is the

time at which a project is proffered when deciding whether to approve or reject it. Thus,

the time of project arrival plays a critical role in the principal’s approval decision, allowing

her to update her beliefs about the agent’s type and the project’s authenticity.

In the unique equilibrium of the baseline model, both the principal and strategic type of

agent play mixed strategies on a finite time interval at the beginning of the interaction,

which we refer to as the phase of doubt. Specifically, during this interval the strategic

agent searches for a real discovery, but also randomly generates a fake. Thus, when the

principal receives a submission, she is uncertain whether it constitutes a real breakthrough

by an ethical agent, a real breakthrough by a strategic agent, or a fake. In equilibrium,

the principal employs a random approval policy over the phase of doubt. To offset the

strategic agent’s desire to commit fraud as early as possible, the principal’s equilibrium

approval probability increases over time. Furthermore, as time passes without receiving a
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submission, the principal’s confidence that the agent is ethical grows. Indeed, the strategic

type submits a fake with probability 1 by some finite date, at which point the phase of doubt

ends. Thereafter, the principal is fully confident that the agent is ethical and she approves

any submission with probability 1.

Because the principal is indifferent between approving and rejecting projects that are sub-

mitted during the phase of doubt, her expected payoff equals her payoff from rejecting. In

other words, she benefits from the arrival of a project if and only if the arrival occurs after the

phase of doubt is over, when her trust in the agent is fully established. Since a submission is

made after the phase of doubt only if the agent actually is ethical and he does not produce a

real project sooner, the principal’s equilibrium payoff is relatively low in the baseline model.

The rest of the paper, therefore, is dedicated to investigating common methods principals

utilize to improve their welfare.

First, we analyze a benchmark setting in which the principal is endowed with commitment

power. Specifically, we suppose the principal can optimize jointly over the agent’s fak-

ing strategy and her own approval strategy, subject to incentive compatibility constraints

that ensure the agent’s compliance (in the absence of transfers). Although the analysis is

somewhat involved, the solution turns out to be quite intuitive. Similar to the equilibrium

structure of the baseline model, the horizon is partitioned into two intervals. During the ini-

tial “phase of doubt,” the strategic agent is indifferent about submitting a fake, but refrains

from doing so, and the principal approves submissions with increasing probability. At the

end point of this interval, the strategic agent stops searching for a real breakthrough and

submits a fake, which the principal commits to accept. Thereafter the phase of credibility

ensues in which only the ethical type of agent is active and the principal accepts any sub-

mission with certainty. The solution, therefore, involves two strong types of commitment:

the principal must reject with positive probability submissions during the initial phase that

she knows to be real and she must accept with probability 1 a submission at the end of

the initial phase that she knows to be fake. Although the principal benefits ex ante from

commitment de facto, the degree of fidelity she is required to possess once projects of known

quality are in front of her seems implausible in many – perhaps most – settings. For this

reason, we explore two other potential improvements.

When committing to reject real projects and accept fakes is not feasible, the principal may

nevertheless be able to commit to transfer her approval authority to another individual

whose preferences differ from her own, whom we refer to as an “evaluator.” In this context

we present three main findings. First, when the principal can only delegate to an evaluator

whose tolerance for fraud is close to her own, she benefits from delegation to a more cautious

evaluator. Thus, even a very limited form of delegation is beneficial. Second, when the
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probability of a strategic agent is high, it is optimal for the principal to delegate to the most

cautious evaluator that she can find. Third, we show that this finding is overturned when

the probability of an ethical agent is high. In this case, it is optimal for the principal to

delegate to an evaluator who is more cautious, but it is not optimal to delegate to the most

cautious evaluator; in fact, delegating authority to an evaluator who is overly cautious is

worse for the principal than keeping the authority herself.

Finally, we investigate a setting where the principal possesses a technology for auditing

submissions, but she cannot commit to use it. The audit technology is costly and noisy:

though it reduces the agent’s informational advantage, it does not eliminate it. The dynamic

structure of the equilibrium is especially intriguing when the auditing technology is relatively

weak and the principal’s prior that the agent is ethical is low. In this case, the phase of doubt

is partitioned into two stages, and auditing plays a different role in each. In the initial stage,

the principal randomizes between auditing and rejection. Here, an audit is used to identify

the rare real project which merits approval. As time passes without a submission and the

principal’s trust in the agent correspondingly grows, she becomes more-inclined to audit his

project. When trust grows sufficiently, the equilibrium transitions to the second stage where

the principal randomizes between outright approval and auditing. Here, the audit serves to

screen out fakes, and as the principal’s trust in the agent continues to grow, she has less

incentive to check his work. Thus, the equilibrium audit probability is non-monotonic over

the phase of doubt. It begins at a low level, increases until it reaches one at the transition

point between the two stages, and then decreases until it reaches zero at the end of the

phase of doubt. Past this time, the principal is fully confident that the agent is ethical, and

she approves any submission with no audit. We show that when the auditing technology is

cheap enough to be used in equilibrium, the principal’s payoff is higher than in the baseline

model, and both types of agent can also be better off.1

The possibility of an ethical agent and the resulting growth of trust are crucial for our anal-

ysis. In the main model, these features generate a finite phase of doubt, which is necessary

and sufficient for the principal to benefit from the relationship. In other words, if the agent

were known to be strategic from the outset, the resulting equilibrium would be stationary,

the phase of doubt infinite, and the principal’s expected payoff zero. Thus, without some

1In an earlier draft we investigated two other methods for improving the principal’s equilibrium payoff:

opaque standards (i.e., uncertainty by the agent regarding the principal’s preferences) and logjams (i.e.,

exogenous delays in the approval process). Analysis of these remedies has been omitted from the current

draft to save space, but is available upon request from the authors. Opaque standards are related to Ederer,

Holden, and Meyer (2018) who study opacity in a multi-task moral hazard model. The logjam is reminiscent

of Fuchs and Skrzypacz (2015, 2019), who show that shutting down a market at certain times changes the

dynamic incentives to trade and enhances efficiency.
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probability of an ethical agent, the principal gains nothing from the production process (a

related point is made by Strulovici (2020) in a different context). In the delegation extension,

selecting a more cautious evaluator is costly only if trust evolves over time. Without this

force, the principal always prefers to delegate to the most cautious evaluator. Finally, one of

the most interesting findings of the auditing extension is the link between the growth of trust

and the dynamics of auditing—the growth of trust increases the probability of auditing when

trust is low and decreases it when trust is high. In a model with a known strategic agent

the evolution of trust is absent, the equilibrium is stationary, and these novel dynamics do

not obtain. In addition, when trust evolves, the principal always benefits when an auditing

technology is available (provided it is not too expensive). This result also hinges on the

evolution of trust; without it, the principal only gains if the test is sufficiently strong.

2 Literature

At a broad level, our paper is related to a recent stream of work concerned with cheating,

gaming, and subterfuge in principal-agent relationships. Barron, Georgiadis, and Swinkels

(2019) consider the design of compensation contracts for agents who can “game the system”

by gambling with intermediate output, thereby adding mean-preserving noise. In such an

environment, the agent’s wage must be a concave function of his output, necessitating linear

ironing on intervals where the standard contract is convex. A different perspective on gaming

is presented in Frankel and Kartik (2019), who study a signaling model in which agents differ

both in their “natural actions” and in their “gaming ability.” The authors show that actions

convey muddled information about both dimensions and derive conditions under which an

increase in the stakes tilts information provision toward gaming ability. Glazer, Herrera, and

Perry (2019) study the informativeness of a product review when the evaluator may be a

dishonest type, who can submit a fake review in order to make the product appear good. In

equilibrium, the informativeness of reviews is compressed: past a cutoff, all positive reviews

have the same effect on beliefs. Perez-Richet and Skreta (2018) consider the design of an

optimal test when the agent has the ability to manipulate the process by which the test

determines his type.

The evolution of the principal’s belief about the agent’s integrity plays a key role in our

analysis. In this sense, our work is connected to the literature on reputation in long term

relationships. To our knowledge, ours is the first paper in this area that explores the link

between the maturation of projects and the growth of reputational capital. Sobel (1985)

considers a repeated cheap talk game in which the agent may be either a “friend” of the

principal, with aligned preferences, or an “enemy,” with opposing preferences. The enemy
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cultivates his reputation by sometimes issuing honest advice in periods with moderate stakes.

When the stakes become sufficiently high, the enemy exploits his reputation by issuing a self-

serving recommendation, thereby revealing his type. Bar-Isaac (2003) studies how reputation

affects a monopolist’s decision to abandon a market. In equilibrium, the good type of seller

signals that his product is likely to be of high quality by staying in the market, despite an

unlucky run in which realized product quality is low. Ely and Välimäki (2003) study a model

of advice in which a long-lived expert advises a sequence of short-lived principals, who observe

past recommendations, but not past states. The authors highlight a perverse incentive,

whereby the “good” advisor is disinclined to make recommendations that might make him

appear to be the “bad” type, even if such recommendations are actually warranted. Deb,

Mitchell, and Pai (2019) also explore a dynamic model of expertise. In each period, the agent

privately observes the arrival of information before choosing whether to act on it. Only a

good agent can acquire information, which can be either high or low quality. To maintain his

reputation, a good agent is sometimes tempted to act on low quality information. Kolb and

Madsen (2020) develop a dynamic principal agent model in which a principal runs a project,

which may be implemented by a disloyal agent. The principal controls the evolution of the

project stakes, which increase both the principal’s flow benefit from honest performance

and a disloyal agent’s flow benefit from undermining. The principal detects undermining

stochastically, and thus the evolution of stakes affects the principal’s flow payoff and her

ability to root out disloyalty.

While our paper focuses on an agent’s ability to generate an artificial arrival, another strand

of literature focuses on an agent’s ability to suppress or delay an arrival, particularly in the

context of information or news. Gratton, Holden, and Kolotilin (2018) study a dynamic

persuasion model in which a stochastic arrival privately informs the sender of his type. Once

the sender discloses that he has learned his type (without disclosing what it is), the receiver

begins to draw informative signals about it. Early disclosure provides the receiver with

more opportunities to learn about the sender and therefore signals good news. Shadmehr

and Bernhardt (2015) analyze a ruler’s incentive to suppress media reports, showing that

the ruler can benefit from a commitment to censor less than he does in equilibrium. Sun

(forthcoming) considers a dynamic model of censorship, demonstrating that when the arrival

of bad news is inconclusive, it is censored aggressively by the good type of ruler, which can

improve information quality and lead to a Pareto improvement. In a different vein, Li,

Matouschek, and Powell (2017) study power dynamics in a relational contract. In each

period, the principal approves or vetoes an agent’s recommended project, without observing

whether her own preferred project is available. Thus, the agent can suppress the arrival of

the principal’s preferred project, hoping to implement his own.

Our analysis does not allow for transfers and limits the principal’s commitment power, but
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it is nevertheless related to the literature on dynamic moral hazard contracts in which the

agent’s effort accelerates a project’s arrival (Bergemann and Hege, 1998, 2005; Mason and

Välimäki, 2015; Sun and Tian, 2018). In these papers, the agent’s effort is costly but increases

the arrival rate of a success. In contrast, in our analysis, cheating increases the arrival rate

of a “success” while decreasing its quality to the point that the principal would prefer to

reject. We are aware of only two dynamic contracting papers — Klein (2016) and Varas

(2018) — that allow the agent to act in a similar manner.

In Klein (2016), the principal hires an agent to experiment by generating public informa-

tion in the form of a state-contingent Poisson process. In addition to the experimentation

technology, the agent has access to a specious technology which produces Poisson successes

(that appear identical to the ones generated by the experimentation technology) at a rate

that is independent of the state. Thus, a specious success is uninformative and worthless

to the principal. The author shows that the optimal compensation contract backloads pay-

ments. By contrast, the agent in our model possesses a technology for generating a single

fake project rather than a stream of false data. In this context, we find that an early arrival

has no value to the principal, while a late (enough) arrival must be authentic.

In the contracting environment investigated by Varas (2018), the agent chooses in each

instant whether to work, shirk, or gamble. Working generates high quality output after an

uncertain amount of time and effort, while gambling generates an output of random quality

that is difficult for the principal to verify. The optimal contract derived by Varas (2018)

exhibits two phases: an initial phase of diminishing payments followed by a stationary phase

in which the agent is not punished for production delays. The principal in Varas (2018)

learns about project quality post–submission, while the principal in our setting learns about

the integrity of the agent pre–submission. More generally, Varas (2018) underscores the

limits of high–powered incentive contracts, whereas our findings point to the crucial role

played by reputation and trust in a setting marked by limited commitment.

3 Model

A principal (she/her) interacts with an agent (he/him) over an indefinite horizon. Time

is continuous and both parties discount future payoffs at rate ρ > 0. The agent develops

a project over time that he submits to the principal for approval. The project can be

developed using a technology that is either authentic or fraudulent. If the agent uses the

authentic technology at time t, then a real project arrives at Poisson rate λ. The fraudulent

technology allows the agent to instantly develop a fake project, at fixed cost φ ∈ [0, 1). Thus,

the authentic technology is free but slow, while the fraudulent technology is costly but fast.
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The agent is one of two types: strategic with probability σ ∈ (0, 1) or ethical with probability

1−σ. The strategic agent can use either technology while the ethical agent can only use the

authentic one. The agent’s type is private information, but the value σ is common knowledge.

Below whenever we write of the agent choosing whether to generate a fake project, we are

referring to the strategic type.

Once a project (of either type) has been developed, it is instantly submitted to the principal

for approval. The state of the project — real or fake — is not directly observable upon

submission. The principal only observes the time at which the project was submitted when

deciding whether to approve or reject it.

The principal would like to approve real projects and reject fakes. Her payoffs are normalized

so that approving a real project yields 1 − θ > 0 and approving a fake yields −θ < 0. If

she rejects a submission then she receives 0 regardless of its state. Preference parameter

θ ∈ (0, 1) thus represents the principal’s tradeoff between type I and type II errors. The

strategic agent would like his project to be approved regardless of its state, obtaining a gross

benefit of 1 from approval, and 0 from rejection.

Discussion of Assumptions. Before moving to the analysis, we discuss some of our

modeling choices. This discussion is self-contained and is not essential for understanding the

rest of the paper.

Cost structure. Producing a fake is assumed to impose an immediate fixed cost on the agent,

regardless of the principal’s ultimate approval decision. This cost could be a resource (e.g.

effort) or financial cost, but it could also incorporate the expectation of future punishment

if fraud is eventually detected. In this vein, it is also possible to include a second “ex post”

cost of submitting a fake, which is sustained only if the project is approved. If this ex post

cost is not so large as to deter faking, then the results are similar to those presented below.

In particular, only the closed form of the principal’s approval strategy is affected.

On the other hand, employing the authentic technology is assumed to be free for either type

of agent. If it involved a positive flow cost, then the strategic agent could produce a fake in

order to avoid the cost of authentic project development. Our goal is to study the incentive to

commit fraud, motivated by the desire for short term gain, which has received relatively little

formal analysis, as opposed to the incentive to shirk, which has been researched extensively.

Nevertheless, incorporating a small positive flow cost for the authentic technology would

have no impact on our results. Normalizing the expected flow cost under the real technology

back to zero would manifest formally as a reduction in φ (calculation in Appendix).

Common Discounting. Although we assume ρ is the same for principal and agent, nearly all

results generalize easily to disparate rates of time preference. The most natural interpretation
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for a common rate is that the relationship ends exogenously according to a Poisson arrival;

e.g., a technological innovation that renders the project obsolete.

Instant Arrivals. We focus on a setting in which projects are submitted instantly once they

are developed, regardless of the underlying technology. This assumption rules out equilibria

in which the agent is compelled to delay by the principal’s off–path belief that submissions

arriving at certain times must be fake. A refinement in the spirit of D1 would eliminate such

off–path beliefs, ruling out equilibria involving delays. In addition, in all model variants, the

equilibrium that we derive is robust to allowing the agent to delay a submission strategically.

Behavioral Type. The assumption that the ethical agent cannot use the fake technology

is made solely for expositional convenience. It is straightforward to construct an outcome

equivalent variant of the baseline model in which the ethical type can employ the fraudulent

technology but chooses not to because – relative to the strategic type – he is more patient,

has a smaller payoff when a fake is approved, or has a larger cost of producing a fake.

Poisson Arrival. Development of a real project is modeled as a Poisson arrival. This assump-

tion simplifies some of the calculations and extensions, but it is not essential for the main

characterization or welfare results. The equilibrium is qualitatively similar for alternative

arrival processes, so long as the strategic agent prefers to fake immediately if he anticipates

certain approval. For example, this holds if the real project arrival follows a distribution

supported on R+ with decreasing hazard rate H(·) and φ < ρ/(ρ+H(0)). In this case, the

equilibrium structure is identical to that specified below in Lemma 4.3. Moreover, modi-

fied versions of equations (4,5) continue to hold resulting in an equilibrium characterization

similar to Proposition 4.1 below.

4 Equilibrium Characterization

In this section, we characterize the weak Perfect Bayesian equilibrium (henceforth equi-

librium) of the game and show that it is generically unique.2 An equilibrium consists of

strategies for the agent and the principal and a belief function for the principal regarding

the state of a submitted project, such that (i) the agent’s strategy is optimal given the prin-

cipal’s acceptance strategy, (ii) the principal’s acceptance strategy is sequentially rational

given her beliefs, (iii) the principal’s beliefs are derived from Bayes’ rule.3

2Multiple equilibria exist iff φ = ρ
ρ+λ . To streamline presentation, we suppress this and all other non-

generic knife-edge cases throughout.

3Because a real project arrives at a positive rate and is assumed to be submitted immediately, all times

t ≥ 0 are on the equilibrium path. Thus, our characterization does not exploit the freedom to specify off-path

beliefs granted by weak PBE.
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Strategies. A pure strategy for the strategic agent is a choice of a “cheating time” t ∈
{R+ ∪ ∞} at which he will produce a fake submission if a real one has not yet arrived.

A mixed strategy for a strategic agent is a probability measure over finite cheating times

represented by cumulative distribution function F (·).4 A strategy for the principal is an

acceptance function a(·) on the domain R+, which specifies the probability with which a

submission at time t is approved.

Beliefs. If a project is submitted at time t, the principal’s belief that it is real must be

derived by Bayes’ rule as the probability of a real submission at t given a submission at t.

Lemma 4.1 (Beliefs). If the strategic agent submits a fake project according to the cumulative

distribution function F (·) with density f(·), then, the probability that a submission at time t

is real is

g(t) =
λ

λ+ ν(t)
, (1)

where

ν(t) ≡ σf(t)

1− σF (t)
.

The function ν(·) is the hazard rate of a fake arrival: it is the likelihood that a fake arrival

is generated at time t, given that one was not generated earlier. It is important to point out

that ν(·) is the hazard rate of a fake from the principal’s perspective, because it accounts for

her uncertainty about the agent’s type, reflected in the parameter σ; for this reason we refer

to ν(·) as the “perceived rate of faking.” Note that λ is the hazard rate of a real arrival,

(which can be generated by either type of agent) and thus the principal’s belief that an

arrival at time t is real is the ratio of the rate of a real arrival to the sum of the rate of a

real arrival and the perceived rate of a fake arrival.

Principal’s Decision. If the principal believes that a project that arrives at time t is real

with probability g(t), then her expected payoff from approving it is

g(t)(1− θ)− (1− g(t))θ = g(t)− θ,

and therefore, the principal’s sequentially rational acceptance strategy must satisfy

a(t) =

!
"""#

"""$

1 if g(t) > θ

[0, 1] if g(t) = θ

0 if g(t) < θ.

(2)

4Strictly speaking, the strategic agent can choose never to cheat with positive probability, thereby allo-

cating some probability mass to t = ∞. However, given Assumption 1 below, the strategic agent cheats with

probability 1 in finite time in equilibrium.
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Remark 1. (Delayed Approval.) We have assumed that the principal makes a decision

whether to accept or reject the agent’s submission as soon as it arrives. Thus, the principal’s

strategy is a probability a(t) with which she approves a project that is submitted at time t.

We could allow for delays in the principal’s approval decision with no changes to the results.

In particular, suppose that the principal chooses a delay d(t) ≥ 0, which specifies how long

she will wait to approve a project that is submitted at time t, with d(t) = ∞ corresponding

to rejection. Allowing the principal to randomize over such pure strategies, she chooses ran-

dom variables D(t) ≥ 0 for t ≥ 0, representing the stochastic delay that is imposed before a

project submitted at time t is approved. This is a direct extension of the current formulation,

which considers strategies of the form Pr(D(t) = 0) = a(t) and Pr(D(t) = ∞) = 1 − a(t).

Nevertheless, focusing on our formulation is without loss. To see the equivalence, consider

random variable D(t). Note that, following a submission at time t, the agent’s expected con-

tinuation payoff is E[exp(−ρD(t))], and the principal’s is E[exp(−ρD(t))](g(t)− θ). Thus,

all delay random variables D(t) that generate the same E[exp(−ρD(t))] are payoff equivalent

for principal and agent. In particular, for any delay random variable D(t), a strategy in our

class with acceptance probability a(t) = E[exp(−ρD(t))] is payoff equivalent for both players.

Confining attention to pure delay strategies, the preceding argument implies delay function

d(t) = − ln(a(t))/ρ and approval strategy a(t) are payoff-equivalent for principal and agent.

As we show below, a(t) is increasing in equilibrium, so d(t) is decreasing. In other words,

the earlier a project is submitted, the longer the principal waits prior to acceptance.

Agent’s Decision. If the strategic agent adopts a pure strategy in which he will cheat at

time t given that no real arrival has been generated by that point, then – holding fixed the

principal’s strategy – the agent’s expected payoff is

u(t) =

% t

0

λ exp(−(ρ+ λ)s)a(s) ds+ exp(−(ρ+ λ)t)(a(t)− φ). (3)

The integral represents the discounted expected payoff to the agent from real arrivals that

occur at all times s < t. If no real arrival occurs before t, then the agent submits a fake

project which costs φ and is accepted with probability a(t). In the limit where the agent

never submits a fake project, he can secure a non-negative payoff of u(∞). Indeed, when

the cost of submitting a fake project is sufficiently high, then the agent never submits one

in equilibrium. This is formalized in the following lemma.

Lemma 4.2 (No Fakes). If φ > &φ ≡ ρ
ρ+λ

, then there is a unique equilibrium of the game

and it involves the agent never submitting a fake project and the principal approving any

submission she receives with probability 1.

The intuition is straightforward. Suppose for the moment that the principal approves any

10



submission with probability 1. Given the stationarity of the environment, the strategic

agent effectively faces two alternatives: he can submit a fake immediately and earn payoff

1 − φ, or he can wait for a real arrival, earning payoff λ/(ρ + λ) = 1 − &φ. Obviously, when

φ > &φ, he prefers the second alternative. In this case, the agent never submits a fake, and

it is sequentially rational for the principal to approve any submission with probability 1.

Motivated by Lemma 4.2, we maintain the following assumption (without restatement) in

what follows.

Assumption 1. The cost of faking is sufficiently low that the equilibrium in which all sub-

missions are real does not exist: φ < &φ.

When φ < &φ, the strategic agent must submit a fake project with positive probability in

equilibrium. He cannot, however, submit a fake with positive probability at any specific

point in time t because the probability of a real arrival at t is 0, implying that the principal’s

best response would be to reject with probability 1. This suggests that in equilibrium,

the strategic type of agent must partially pool with the ethical type by submitting a fake

project according to some probability density function, f(·). In order for randomization to

be optimal for the strategic agent, he must be indifferent between all cheating times that

he might select. Given the agent’s impatience, he will be tempted to fake early, because an

early approval is more valuable. To maintain indifference, it must be that early submissions

are approved less often than later ones. This intuition is formalized in the following lemma.

Lemma 4.3 (Equilibrium Structure). In any equilibrium of the game:

(i) The time at which the agent submits a fake is drawn from a continuous mixed strategy

with no mass points or gaps supported on an interval [0, t], where t ∈ (0,∞).

(ii) For t ∈ [t,∞), the principal always approves the project, a(t) = 1.

(iii) For t ∈ [0, t), the principal’s strategy a(·) is strictly increasing, continuous, and differ-

entiable almost everywhere, with limt→t a(t) = 1.

In equilibrium, the interval of arrival times is divided into two phases: an early phase of doubt

[0, t), in which the agent’s submission is treated with skepticism, inducing the principal to

reject with positive probability, and a late phase of credibility, [t,∞) in which a submission

originates only from the ethical type and is approved with certainty. The strategic agent’s

mixed strategy is supported continuously on the entire phase of doubt. If the agent’s strategy

had an atom, the principal would reject an arrival at the atom. If it had a gap, the principal

would approve any arrival in the gap. In both cases, the agent has a profitable deviation.
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Building on the preceding observations, it is also possible to show that the phase of doubt

must be finite (for σ < 1). Mathematically, it is simple to show that the cheating rate, ν(t),

approaches 0 as time passes, regardless of the agent’s strategy.5 It follows that at some finite

time, the cheating rate becomes small enough that the principal strictly prefers to accept

an arrival, and the agent never waits past this time to submit a fake, resulting in a finite

phase of doubt. In other words, because the probability of the ethical type is positive, the

strategic type cannot keep the principal’s belief at (or below) her point of indifference (θ)

indefinitely. Intuitively, as time passes without an arrival, the principal’s belief that the agent

is ethical grows. In order to maintain belief g(t) = θ about a submitted project over time,

the strategic type must fake more and more aggressively, reinforcing the inference that the

agent is ethical in the absence of an arrival. Eventually, the agent must fake so aggressively

that a non-arrival reveals him to be ethical, and g(t) = 1 for any subsequent arrival.

Because the strategic agent mixes over the phase of doubt in equilibrium, his payoff u(·)
must be constant. Using this observation, we show that the approval probability a(·) is

continuous and differentiable. Furthermore, because the agent is impatient, the approval

probability must rise over time so as to maintain indifference between early fake submissions

and later ones. Moreover, the acceptance probability approaches one at the end of the

phase of doubt, t. Indeed, once the phase of doubt ends, the principal knows that the agent

is ethical. By implication, for times near t, the principal must approve with probability

approaching one; otherwise, the agent could benefit by waiting until just after t to fake.

Lemma 4.3 implies that during the phase of doubt the mixed strategies for the principal and

agent must obey a pair of first-order linear differential equations,

g(t) = θ ⇒ σf(t)

1− σF (t)
=

λ(1− θ)

θ
, (4)

u′(t) = 0 ⇒ a′(t)− ρa(t) + φ(ρ+ λ) = 0. (5)

The first equation requires the principal to be indifferent between accepting and rejecting

an arrival, while the second requires the agent to be indifferent about submitting a fake

over all times inside the phase of doubt. Solving the first equation with boundary condition

F (0) = 0 (which comes from the absence of a mass point at t = 0) yields the agent’s

equilibrium mixed strategy. Using the equilibrium mixed strategy, we find t by solving

F (t) = 1. Finally, solving the second differential equation with boundary condition a(t) = 1

yields the principal’s acceptance strategy. To characterize the equilibrium succinctly, define

µ ≡ λ(1− θ)

θ
,

which is the perceived rate of cheating in equilibrium (see (4)).

5Integrability requires f(t) → 0 as t → ∞, while (1− σF (t)) ≥ 1− σ > 0. Hence, ν(t) → 0.
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Proposition 4.1 (Equilibrium Fakes and Approvals.). The unique equilibrium of the game

is characterized as follows.

Strategies. The agent’s cheating time is drawn from the distribution

F (t) =
1

σ
(1− exp(−µt)) (6)

supported on interval [0, t), where

t = − ln(1− σ)

µ
. (7)

If t ∈ [0, t), then the principal accepts a submission with probability

a(t) =
φ

&φ
+

'
1− φ

&φ

(
exp{−ρ(t− t)}, (8)

and with probability 1 if t ≥ t.

Beliefs. If t ∈ (0, t), then g(t) = θ, and g(t) = 1 otherwise.

Payoffs. The strategic agent’s equilibrium payoff is US = a(0)− φ, and the ethical agent’s

payoff is UE = US − (&φ− φ) exp(−(ρ+ λ)t). The principal’s payoff is

V = (1− σ)(1− θ)

% ∞

t

λ exp{−(ρ+ λ)s} ds. (9)

We discuss each aspect of Proposition 4.1, beginning with the strategies. Formally, the

agent’s indifference condition, coupled with the finite phase of doubt implies that the princi-

pal must approve early submissions—that are more tempting to fake—with lower probability

and late submissions with higher probability. The differential equation and boundary con-

dition for the agent’s indifference deliver an acceptance strategy of a particular functional

form: a constant plus an exponential function with growth rate ρ, the discount rate.

To understand the shape of the approval strategy, it is helpful to consider the differential

equation for a(·), given in (5). This equation admits a particular solution with a constant

acceptance function a(t) = φ/&φ and a complementary solution a(t) = exp(ρt). To see

where the particular solution comes from, note that by delaying, the strategic agent loses

the opportunity to generate an instant acceptance with probability a(t), losing ρa(t) at the

margin. However, by delaying, the agent may save on the faking cost φ, either if the game

ends due to an exogenous shock (at rate ρ) or a real project arrives (at rate λ), resulting in a

marginal gain of φ(ρ+ λ). Thus, the constant term equates the marginal loss and gain from

delay, leaving the agent indifferent. To see where the exponential term appears, note that

(5) also accounts for the increases in the acceptance probability over time, reflected in the

term a′(t). Thus, by marginally delaying, the agent also increases the probability that his
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Figure 1: Proposition 4.1.

fake will be approved. To maintain the agent’s indifference, the increase in the acceptance

probability must be exactly offset by discounting, resulting in an acceptance strategy that

grows at rate ρ. Furthermore, in order to satisfy the boundary condition a(t) = 1, the weight

on the complementary solution (the exponential) must be strictly positive. Intuitively, we

find that the probability of acceptance is directly linked to the belief about the agent’s

type. If the agent were known to be strategic with probability 1, then the game would be

stationary and a(t) = φ/&φ in the unique equilibrium. With a positive probability of an ethical

agent, the acceptance probability exceeds φ/&φ at time 0, and it increases continuously as the

principal’s trust grows. At the boundary t, the principal’s belief that the agent is ethical

and her acceptance probability attain 1 simultaneously; the weight on the complementary

solution ensures this equality.

What about the agent’s strategy? It is sequentially rational for the principal to mix over

the phase of doubt if and only if her belief that a submission is real is g(t) = θ, which

implies that the perceived rate of faking is constant, as in (4). Indeed, because the authentic

technology has a constant arrival rate, a constant perceived rate of faking ensures that the

principal does not learn about the state of a project from observing the time at which it was

submitted. Solving (4), we find that the only candidates are truncated exponentials of the

form 1
σ
(1−κ exp(−µt)), where κ is an integration constant. Finally, ruling out a mass point

at zero yields, κ = 1, delivering the stated distribution. It is worth pointing out that the

principal’s perceived rate of faking is constant in the phase of doubt, ν(t) = µ, the strategic

agent’s actual faking rate f(t)/(1 − F (t)) increases over time. As the principal’s trust in

the agent grows, the strategic type takes advantage by committing fraud at a higher rate,

approaching infinity at t.
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We consider payoffs next. In equilibrium, the strategic agent is indifferent over submitting a

fake project at any time within the phase of doubt. Thus, his payoff must equal the expected

return to faking at t = 0, where it is accepted with the lowest probability, a(0). Unlike the

strategic agent, the ethical agent has no opportunity to fake. In other words, he must “wait

forever” to fake, which yields payoff u(∞). By implication, the ethical agent’s equilibrium

payoff is strictly lower than the strategic agent’s, who could always mimic the ethical type’s

strategy but strictly prefers not to (when φ < &φ). Furthermore, compared to the case when

σ ≈ 0, both the ethical and strategic agents are worse off. If the principal believes the agent

is very likely ethical, the phase of doubt collapses to zero, and both types’ submissions are

almost certain to be approved.

To understand the principal’s payoff and the normative implications of fraud, note first that

for an arrival during the phase of doubt (t ≤ t), the principal mixes between approval and

rejection, and therefore, she expects zero surplus from any arrival during this phase. Past

the phase of doubt (t ≥ t), only the ethical agent is still active: in equilibrium, the strategic

agent submits a fake before t with probability 1. Consequently, when a project is submitted

past time t, the principal is confident that it is real, and she approves it. Thus, an arrival

after t generates expected surplus 1− θ for the principal.

Together, these observations imply that the principal expects positive surplus from the

project only when two conditions are met. First, the agent must be ethical: if the agent is

strategic, then he will submit during the phase of doubt with probability 1 in equilibrium,

and his arrival, whether real or fake, generates no expected surplus for the principal. Sec-

ond, the real technology must produce an arrival relatively late, after the phase of doubt

is over. If the ethical agent is “lucky” and produces a real arrival quickly, it also generates

no expected surplus for the principal. This normative implication is particularly pernicious:

absent fraud, it is the early arrivals that are most valuable to the principal.

5 Commitment Power

In this section we investigate a benchmark in which the principal can commit to her ap-

proval strategy a(·). As will become clear, implementation of the optimal approval strategy

requires very strong commitment power on the part of the principal, which may be implau-

sible in some settings. Nevertheless, it is instructive to highlight the differences between the

commitment solution and the equilibrium strategy derived in the preceding section. Addi-

tionally, understanding the limitations associated with full commitment sets the stage for

us to consider other methods for improving the principal’s payoff vis-à-vis the equilibrium

outcome.

15



To derive the commitment solution, we adopt the standard approach of the principal-agent

paradigm without transfers, assuming that the principal designs her approval strategy a(·)
and recommends a faking strategy to the agent. The agent complies with the principal’s

recommendation, provided that doing so is incentive compatible. In other words, (almost)

all realizations τ in the support of the recommended faking strategy must be optimal; u(τ) ≥
u(t) for all t ≥ 0 (u(t) is the agent’s payoff of faking at t, given in (3)).

Remark 2. (Implementation via Delayed Approval) Though we focus on the design of the

principal’s random approval strategy a(·), following the logic of Remark 1, our analysis applies

equally to the design of an optimal deterministic delay function, d(·), which specifies the delay

imposed on a project that is submitted at time t, before it is approved. This implementation is

somewhat more plausible than random approval because it is easier to verify the deterministic

delay d(t) than the randomization a(t).

Next, we argue that it is without loss of generality to focus on deterministic faking strategies.

Consider an optimal approval strategy for the principal, a(·), and define the set of optimal

faking times for the strategic agent by S = {τ |u(τ) ≥ u(t) for all t ≥ 0}. Note that any

faking strategy supported on S is incentive compatible. Consider the subset of faking times

S ′ ⊆ S that are optimal for the principal. If S ′ is a singleton, τ , then it is optimal for the

principal to recommend that the agent fakes at time τ . If S ′ is not a singleton, then both

the principal and agent are evidently indifferent over all mixtures supported on S ′, including

a degenerate one that puts probability 1 on any τ ∈ S ′. Thus, it is without loss of generality

to focus on an equilibrium in which the principal recommends a single incentive compatible

faking time to the agent, denoted τ .

Building on the preceding observations, the principal’s design problem is

max
a(·),τ

(1− θ)

% τ

0

λ exp{−(λ+ ρ)t}a(t)dt+ (1− θ)(1− σ)

% ∞

τ

λ exp{−(λ+ ρ)t}a(t)dt

−θσ exp{−(λ+ ρ)τ}a(τ)

subject to (IC), u(t) ≤ u(τ) for all t ≥ 0 and (F), a(t) ∈ [0, 1] for all t ≥ 0. As is customary

in the contracting literature (e.g. Guesnerie and Laffont (1984)) we focus on absolutely

continuous a(·).6

The first term of the principal’s objective represents the expected benefit generated by a

real arrival (from either type of agent) that occurs before the recommended faking time,

6Such an assumption is standard in dynamic optimization problems. For example, one could formulate

the principal’s problem as a control problem. A natural formulation has u(·) as a state variable. The law of

motion for u(·) involves both a(·) and a′(·), and thus it is natural to treat a′(·) as the control and a(·) as a
state variable. Thus, a′(·) must integrate to a(·), and hence a(·) is absolutely continuous.

16



the second term represents the benefit generated by a real arrival that occurs after the

recommended faking time (which is obtained only if the agent is ethical), and the third term

is the cost of approving a fake submission with probability a(τ) at the recommended faking

time. The principal also faces an incentive constraint (IC) which requires that the agent’s

payoff of faking at the recommended time is at least as large as his payoff of faking at any

other time. The principal also faces a feasibility constraint (F), which requires that a(t) is a

probability.

This formulation, in and of itself, hints at the value of commitment for the principal. At

the recommended (incentive compatible) faking time, the principal commits to approve a

fraudulent project with probability a(τ), which is costly if this time is reached and the agent is

strategic. By providing incentives for the agent to fake only at this time, the principal ensures

that projects submitted at all other times are real, and she would like to approve them with

probability 1. However, incentive compatibility generally requires the principal to approve

such projects with lower probability. Thus, the principal leverages commitment power in

both directions—sometimes approving a project she knows is fraudulent, and sometimes

rejecting a project that she knows is real. Her design problem optimally trades off these

costs and benefits; qualitatively, an earlier faking time τ or a higher probability of approval

a(τ) increases the direct cost, but it also relaxes the agent’s incentive to fake at other times

and allows real projects to be approved with higher probability.

We analyze this problem in detail in the online Appendix; here we focus on the key re-

sults. First, we find that with commitment, the structure of the principal’s optimal approval

strategy is similar to the equilibrium strategy without commitment. In particular, with

commitment, the agent’s incentive constraint binds on an interval of early times and is slack

otherwise. In other words, the agent is indifferent between faking at all times in an initial

interval, and strictly prefers any time in this interval to a time outside this interval; a T ≥ 0

exists (possibly infinite) such that u(t) = u∗ for t ∈ [0, T ], and u(t) < u∗ for t > T , where

u∗ is the agent’s payoff under principal commitment. One immediate implication is that the

recommended faking time satisfies τ ∈ [0, T ]. Furthermore, for each T , the approval strategy

is determined by the agent’s indifference, as in (5). Thus, the optimal approval strategy is

a(t) =
φ

&φ
+ (1− φ

&φ
) exp(−ρ(T − t)),

for some T . Substituting into the principal’s objective, it is straightforward to establish that

among the incentive compatible faking times τ ∈ [0, T ], it is optimal to recommend τ = T ,

thereby delaying faking as long as possible. Incorporating this finding, we show that the

principal’s objective function is single-peaked in τ , the optimal τ is interior, and it is found

in closed form.
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Proposition 5.1 (Commitment). With commitment, the optimal faking time is

τ = −
ln
)

(1−θ)(!φ−φ)

(1−θ)(!φ−φ)+σ(1−!φ+!φθ)

*

λ
.

The optimal approval strategy is

a∗(t) =
φ

&φ
+ (1− φ

&φ
) exp(−ρ(τ − t)),

for t ≤ τ , and a∗(t) = 1 for t > τ . The strategic agent’s payoff with principal commitment

is a∗(0) − φ. Incentive compatibility binds for t < τ , and it is slack otherwise; u(t) = u(τ)

for t ∈ [0, τ ] and u(t) < u(τ) for t > τ .

The proof of this result is rather involved and constitutes the entire online appendix.

The structure of the commitment solution closely resembles the equilibrium structure of the

baseline model, with a “phase of doubt” t ∈ [0, τ) where a(t) < 1, followed by a phase

of credibility, where a(t) = 1. However, two crucial differences emerge. First, all faking

occurs at time τ—as described previously, the principal leverages her commitment power

by approving a fake at time τ with probability 1, and rejecting real projects that arrive

before τ with positive probability. Hence, there is no “doubt” in the phase of doubt under

commitment because such submissions are never fakes. Second, the duration of the phase

of doubt is different with commitment. Without commitment, the duration of this phase

is pinned down by the evolution of the agent’s credibility. Given that he produces fakes at

perceived rate ν(t) = µ, it takes exactly time t for his credibility to be fully established.

In contrast, with commitment, the duration of the phase of doubt, τ , is determined by

the interaction of the IC constraint and the principal’s objective. It therefore depends on

parameters that are absent from t: for example, φ, which determines how tempting cheating

is for the agent and, indirectly, how big of a distortion is needed for incentive compatibility.

Building on the previous observations, τ can be either larger or smaller than t. For example,

when φ is sufficiently close to &φ, the optimal recommended faking time is arbitrarily large, but

t is finite for σ < 1. In this case faking is not very tempting for the agent, so the distortions

arising from IC are relatively small. Thus, the principal can maintain a high approval

probability at times before τ , and it is worthwhile to delay faking as much as possible.

Conversely, for φ < &φ, the optimal recommended faking time τ is finite for all σ, but t is

arbitrarily large for σ close to 1. Taken together, these observations imply that commitment

may either extend or shorten the phase of doubt. Comparing each type of agent’s payoff

when the principal can commit to the case where she cannot, the only difference is the

duration of the phase of doubt. Because commitment may extend or shorten this phase, the

agent may benefit or suffer when the principal can commit.
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As noted earlier, the principal’s commitment power is quite demanding: not only does the

principal commit to accept a project she knows is fake (at time τ), but she also commits to

reject a project that she knows to be real with positive probability (before time τ). Because

the agent (of either type) also prefers that such projects are accepted, a positive probability

of rejection is not renegotiation proof. Even if she lacks such strong commitment power, the

principal may yet possess other methods for improving her expected payoff relative to the

equilibrium of the baseline model. We explore two such instruments in the ensuing sections,

transfer of approval authority to a proxy with non-congruent preferences and randomly

auditing submissions.

6 Delegation

When fully committing to the optimal approval policy is not feasible, project sponsors may

still be able to exploit institutional features to generate some degree of commitment. In this

section we explore one common practice, delegation of approval authority to a proxy. Thus,

consider a setting where the principal has the capability to delegate the acceptance decision

to an “evaluator” with different preferences than her own. In particular, the principal assigns

decision rights to a proxy whose preference parameter is +θ rather than θ, and the transfer of

authority is observed directly by the agent who also knows +θ.

The equilibrium of the game between agent and evaluator is the same as the one characterized

in Proposition 4.1, with +θ replacing θ. The principal’s payoff from delegating authority at

the beginning of the game is therefore

VD(+θ|θ) =
% tD

0

exp(−ρt)wD(t)(gD(t)− θ)aD(t)dt+ (1− θ)(1− σ)

% ∞

tD

λ exp(−(ρ+ λ)t)dt,

where the subscriptD denotes the equilibrium of the delegation subgame (note that VD(θ|θ) =
V , see (9)). From Proposition 4.1 we have gD(t) = +θ and

(1− σFD(t)) = exp(−λ
1− +θ
+θ

t), σfD(t) = λ
1− +θ
+θ

exp(−λ
1− +θ
+θ

t), tD = − ln(1− σ)+θ
λ(1− +θ)

.

Substitution then yields

VD(+θ|θ) =
% tD

0

exp(−(ρ+
λ

+θ
)t)

λ

+θ
(+θ − θ)aD(t)dt+ (1− θ)(1− σ)

% ∞

tD

λ exp(−(ρ+ λ)t)dt.

This expression allows us to identify the main tradeoffs associated with delegation. By

delegating to an evaluator with different preferences than her own, the principal changes

the equilibrium belief during the phase of doubt from g(t) = θ to gD(t) = +θ. Therefore,
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by delegating to an evaluator who is more cautious than she is (+θ > θ), the principal gains

positive expected surplus (+θ−θ) from any arrival that is approved during the phase of doubt.

At the same time, the agent cheats less aggressively, at rate λ(1− +θ)/+θ < λ(1− θ)/θ. This

reduction in the agent’s cheating rate has three negative consequences for the principal. First,

it extends the phase of doubt (tD > t), delaying the phase of credibility when all submissions

are authentic. Second, it slows down the overall arrival rate of projects during the phase

of doubt (λ/+θ < λ/θ) so that the expected benefit from approval is likely to be discounted

more heavily. Third, the evaluator’s approval probability is itself strictly lower during the

phase of doubt (aD(t) < a(t) for t < tD). Of course, delegating to a less cautious proxy

(+θ < θ) reverses these effects: arrivals during the phase of doubt are harmful if approved,

arrive faster, and are more likely to be approved, but the phase of doubt is shorter.

Because of these tradeoffs, it is not obvious whether the principal benefits from delegating

to a more cautious or less cautious evaluator, or – in fact – from delegation at all. While

answering these questions in full generality is analytically intractable, we can answer them

for important regions of the parameter space.

First we consider a limited form of delegation in which the principal can only delegate

“locally,” to an evaluator whose preference parameter is not too different from her own. This

setting is interesting as a theoretical benchmark, but it also captures a plausible feature of

some organizations. Specifically, suppose that the organization is somewhat rigid, preventing

the principal from transferring formal authority to the evaluator. A transfer of real authority

may nevertheless be possible as long as the principal pays a sufficiently high cost c (e.g., loss

of reputation) if she overrules the evaluator. For instance, if she delegates to a more (less)

cautious surrogate then – as discussed above – the principal will strictly expect to benefit

(suffer) from acceptance of any arrival during the phase of doubt. However, if |+θ−θ| < c, then

the principal will not overrule the evaluator’s decision in equilibrium.7 Thus, when transfer

of formal authority is not possible, the principal can successfully delegate to evaluators with
+θ ∈ (θ − c, θ + c). In particular, when c is small, only local delegation is credible. The

following proposition characterizes the optimal policy in this case.

Proposition 6.1. (Local Delegation). Compared with keeping the decision authority herself,

the principal strictly gains (loses) by delegating to an evaluator who is slightly more (less)

7If the principal delegates to a more-cautious evaluator (!θ > θ) who rejects an arrival in the phase of

doubt, it is sequentially rational for the principal not to overrule provided !θ − θ − c < 0, i.e., !θ < θ + c.

Conversely, if she delegates to a less-cautious evaluator (!θ < θ) who approves an arrival during the phase of

doubt, the principal will prefer not to overrule the evaluator if !θ − θ > −c, i.e. !θ > θ − c. If the principal

delegates to an evaluator such that |!θ−θ| > c, then an equilibrium of the delegation subgame exists in which

the principal sometimes overrules the evaluator but is worse off than if she had retained authority herself

(details available upon request).
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cautious than she is; an ε > 0 exists such that (1) VD(+θ|θ) > V for +θ ∈ (θ, θ + ε), (2) V >

VD(+θ|θ) for +θ ∈ (θ − ε, θ).

This proposition has two noteworthy implications. First, even the very limited form of local

delegation considered is valuable for the principal. In this sense, delegation is a robust and

potentially powerful instrument for addressing the incentive problem that we study. Second,

when delegating locally, the principal benefits from an evaluator who is more cautious and

is harmed by an evaluator who is less cautious.

Next, we consider the principal’s globally optimal choice of evaluator +θ ∈ [0, 1] when the

probability that the agent is strategic is either close to 1 or close to 0.

Proposition 6.2. (Global Delegation). If σ is sufficiently close to 1, then the principal’s

payoff is increasing in +θ, and it is therefore optimal for her to select the most cautious

evaluator, +θ = 1. If σ is sufficiently close to 0, then it is optimal for the principal to select an

evaluator who is more cautious than she is, but it is not optimal to select the most cautious

evaluator; the optimal +θ ∈ (θ, 1).

To appreciate the significance of this proposition, note first that the tradeoff associated

with the evaluator’s preference parameter is only substantive if trust evolves over time. In

particular, if the agent is a known strategic type (σ = 1), then the equilibrium is stationary

and the phase of doubt is infinite regardless of the evaluator’s preference. By implication, two

of the costs associated with increasing +θ are absent (extending the phase of doubt, reducing

the approval probability), and the principal’s payoff is strictly increasing in +θ. Therefore, for
σ = 1 it is globally optimal to delegate to the most cautious evaluator, +θ = 1. Proposition

6.2 shows that these findings continue to hold when the agent is sufficiently likely to be

strategic, but that they are overturned if the agent is sufficiently likely to be ethical. In

particular, for σ sufficiently close to 0, the principal’s payoff is not monotonically increasing

in +θ so that the global optimum involves +θ ∈ (θ, 1). In fact, as we show next, excessive

caution on the part of the evaluator may completely undo the benefit of delegation.

Proposition 6.3. (Extreme Caution). If σ is below a threshold, then delegating to an eval-

uator who is too cautious is strictly worse for the principal than keeping the authority her-

self; given σ < σ (characterized in closed form), there exists ε > 0 such VD(+θ|θ) < V for
+θ ∈ (1− ε, 1].

In spite of the complex form of the principal’s payoff function in the delegation subgame,

Propositions 6.1, 6.2, and 6.3 shed light on the principal’s optimal policy. She always benefits

from employing a proxy that is slightly more cautious than she is, even if she is almost sure

that the agent is ethical. Furthermore, she prefers the most cautious proxy if and only if
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she is sufficiently sure that the agent is strategic. In the parameter cases we have analyzed,

the principal never prefers to delegate to a proxy who is less cautious than she is. On this

point, it is worth noting that in our numerical simulations, the principal never benefits from

employing an evaluator less cautious than herself.

7 Auditing

Another common method for mitigating fraud is to audit submissions prior to approval. We

explore this possibility in this section. Throughout we assume that the principal cannot

commit to a testing policy, and solve for an equilibrium of the resulting project submission

and auditing game.

Suppose that the principal can pay a cost k > 0 to perform a test on a project that reveals

fraud with probability α ∈ (0, 1]. That is, if the project is fake, it fails the test with probability

α and passes the test (a type II error) with probability 1 − α. Furthermore, a real project

always passes the test.8 An audit is called strong if α > α∗ ≡ &φ− φ, and weak if α < α∗.

Let g(t) represent the principal’s belief that a submission at time t is real before performing

an audit. We begin with an observation that follows from basic reasoning about the value

of information, namely that there is no point in paying for a costly signal unless different

realizations lead to different optimal decisions.

Lemma 7.1. If it is sequentially rational for the principal to test a submission at t, then it

is optimal to approve the project if and only if it passes the test.

Following an arrival at time t, the principal chooses between auditing, approving with no

audit, and rejecting with no audit. She therefore compares the following three expected

payoffs,

Audit: g(t)− θ + αθ(1− g(t))− k

Approve: g(t)− θ

Reject: 0.

(10)

If the test is too expensive, then the principal will not use it and the equilibrium of the main

model, where g(t) = θ over the phase of doubt, will obtain. Plugging g(t) = θ into (10)

reveals that the test will be deployed in equilibrium if and only if

k < αθ(1− θ) ≡ k∗,

8Allowing for real submissions to fail the test (a type I error) complicates expressions significantly without

adding additional insight.
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which we assume throughout the rest of this section.

Let p(t) be the probability the principal tests a project that arrives at time t, a(t) be the

probability she approves the arrival without testing, and r(t) be the probability she rejects

without testing. Comparing the principal’s payoffs from each of the three alternatives in

(10), we find the following sequentially rational strategy.

a(t) = 1 if g(t) ∈ (θ1, 1]

a(t) + p(t) = 1 if g(t) = θ1

p(t) = 1 if g(t) ∈ (θ0, θ1)

p(t) + r(t) = 1 if g(t) = θ0

r(t) = 1 if g(t) ∈ [0, θ0),

(11)

where

θ1 ≡ 1− k

αθ
and θ0 ≡

(1− α)θ + k

1− αθ
.

Note that k < k∗ implies θ0 < θ < θ1and k = k∗ implies θ0 = θ = θ1. Thus, the prin-

cipal approves when her belief is high, rejects when her belief is low, and audits for a

(non-degenerate) interval of moderate beliefs surrounding θ. At the boundaries between

these intervals, the principal is indifferent between the adjacent actions. In particular, if

g(t) = θ1, then the principal is indifferent between approving and auditing. If the principal

mixes between auditing and acceptance at time t, then we say that she “mixes with default

approval.” Similarly, if g(t) = θ0, the principal is indifferent between auditing and reject-

ing. If she mixes between auditing and rejecting at time t, we say that she “mixes with

default rejection.” Define the perceived faking rates associated with θi ∈ {θ0, θ1} as µi; i.e.,

g(t) = θi ⇔ ν(t) = µi ≡ λ(1− θi)/θi; clearly, µ0 > µ1. We establish next that the principal

audits randomly in equilibrium, unless she is certain that the project is real.

Lemma 7.2. In any equilibrium the following must hold:

(i) If ν(t) > 0 for all t ∈ (t1, t2), then p(t) > 0 for all such t.

(ii) No open interval (t1, t2) exists such that p(t) = 1 for all t ∈ (t1, t2).

Part (i) is easily explained. If the principal does not audit in some interval where the

agent fakes, then maintaining the agent’s indifference requires the principal to mix between

approval and rejection. Thus, the agent must mix as in the main model, with ν(t) = µ and

g(t) = θ. But then auditing would be strictly beneficial (see (11)).

To appreciate part (ii), suppose to the contrary there is an equilibrium in which the principal

audits every submission in some time interval (t1, t2). If the test is strong, then the agent
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expects a fake project to be detected with relatively high probability α. In this case, the

agent would like to delay faking as much as possible in order to increase the chance that a

real project arrives (his expected payoff of faking is strictly increasing in t). In contrast, if

the test is weak, then the agent expects that a fake will pass the test with relatively high

probability 1 − α and will be approved. Because he is impatient, the agent would like to

fake as soon as possible (his expected payoff is strictly decreasing in t). In either case, no

fakes are submitted in the interior of the interval, and the principal can profitably deviate

by approving a submission at t ∈ (t1, t2) without performing a costly audit.

For the following discussion, we stipulate that the equilibrium begins with a phase of doubt

in which the agent fakes (this is proved formally in Lemma 7.3 with similar intuition to

the main model). Lemma 7.2 shows that the principal must audit randomly at almost every

time in the phase of doubt, but the question is whether she randomizes with default rejection

or default acceptance. In other words, the phase of doubt can be sub-divided into stages,

depending on whether the principal mixes with default approval or default rejection.

To understand the structure of these stages, note first that in order to offset the agent’s

impatience, the probability that a fake project is approved, aF (·), must increase over the

phase of doubt.9 The logic is similar to the main model—the agent must mix over faking

times in the phase of doubt to avoid detection, but delayed faking is costly due to impatience.

Thus, to maintain indifference, a fake that is submitted later must be approved with higher

probability. In a stage of mixing with default approval, a fake is approved unless it is tested

and fails, probability aF (t) = 1 − αp(t). Thus, in a default approval stage, p(·) must be

decreasing. In contrast, in a stage of mixing with default rejection, a fake is approved if it

is tested and it passes, aF (t) = p(t)(1 − α). Therefore p(·) must be increasing in a default

rejection stage. That aF (·) is increasing also implies the equilibrium can have at most one

stage of mixing with default rejection, and if such a stage exists, it must occur before a

stage of mixing with default approval. As described above, during a default rejection stage

aF (t) = p(t)(1−α) ≤ 1−α; meanwhile during a default approval stage, aF (t) = 1−αp(t) ≥
1−α. Thus, an increasing aF (·) implies that a stage of default rejection occurs before default

approval, if at all, and that there can be no more than one default rejection stage.

Additionally, continuity of aF (·), which is necessary for the agent’s indifference, determines

boundary conditions for p(·) at the transitions between stages. In particular, at the transition

time between the stages of default rejection and approval, we must have (1 − α)p(t) =

9Unlike the main model where the approval probability is identical for real and fake projects, auditing

introduces a wedge, aR(t) > aF (t). If it is tested, a real project always passes the test, but a fake passes

with probability 1− α. The agent’s strategic decision about the timing of his fake depends crucially on the

probability that a fake submission is approved, and thus, on the properties of aF (·). The probability that a

real project is approved aR(·) plays a role in the equilibrium characterization of the audit probability.
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1− αp(t) ⇒ p(t) = 1. Furthermore, because aF (·) ≤ 1− α in a default rejection stage, but

aF (·) = 1 in the phase of credibility, the phase of doubt must end with a stage of default

approval. Indeed, at the transition between the stage of default approval and the phase of

credibility, we must have 1 − αp(t) = 1 ⇒ p(t) = 0. The following result formalizes these

observations.

Lemma 7.3 (Auditing Equilibrium Structure). In an equilibrium with auditing, there exists

tA ∈ (0,∞) and +tA ∈ [0, tA) such that

(i) the agent’s cheating time is drawn from a continuous mixed strategy with no mass points

or gaps supported on an interval [0, tA].

(ii) for t ∈ [tA,∞), the principal approves the project with no audit, a(t) = 1, and the agent

never fakes, ν(t) = 0.

(iii) for t ∈ [+tA, tA) the principal mixes between auditing and approval, p(t) ∈ (0, 1) and

a(t) + p(t) = 1. The belief g(t) = θ1, and the perceived rate of faking is ν(t) = µ1.

The probability of auditing is strictly decreasing, continuous, and differentiable, with

limt→tA p(t) = 0.

(iv) if +tA > 0, then for t ∈ [0,+tA) the principal mixes between auditing and rejection, p(t) ∈
(0, 1) and p(t)+r(t) = 1. The belief g(t) = θ0, and the perceived rate of faking is ν(t) =

µ0. The probability of auditing is strictly increasing, continuous, and differentiable, with

limt→"tA p(t) = 1. Furthermore, for t ∈ (+tA, tA), we have limt→"tA p(t) = p(+tA) = 1.

We refer to the structure with +tA = 0 as the one-stage structure, (default approval only),

and to +tA > 0 as the two-stage structure (mixing with default rejection, then mixing with

default approval). In both cases, we refer to the interval [0, tA] as the phase of doubt. The

one-stage and two-stage structures are summarized concisely in Figure 2.

Lemma 7.3 suggests that the dynamics of auditing are closely tied to the evolution of trust.

Consider the two-stage structure. In the initial stage of mixing with default rejection, trust

is relatively low. The agent fakes aggressively and the principal behaves skeptically, occa-

sionally testing a submission in hopes of fishing out a rare real project and rejecting the rest.

As time passes and trust grows, the principal behaves less skeptically toward the project

and is more likely to test it. Once trust reaches a certain point, the principal tests with

probability 1. At this point, the equilibrium transitions to the second stage in which the

principal mixes with default approval. Here trust is relatively high but not perfect: the agent

fakes less aggressively and the principal gives the project the benefit of the doubt, approving

it if she doesn’t audit. As trust continues to grow, the principal is more inclined to approve
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Figure 2: The one-stage structure (top) and two-stage structure (bottom). Note: p(·) is

continuous, with p(+tA) = 1 and p(tA) = 0. Agent mixed strategy has no mass points or gaps.

submissions without testing them. At the end of the second stage the audit probability

becomes 0—the game transitions to the phase of credibility. The principal is confident that

the agent is ethical, and all arrivals are approved. In other words, the principal audits with

relatively low probability when trust is low and when trust is high, and audits with relatively

high probability in between.

The following result summarizes the key properties of the equilibrium with auditing—a

complete closed-form characterization is presented in the Appendix (Propositions A.1, A.2).

Proposition 7.1 (Auditing Equilibrium Summary). The equilibrium of the game with au-

diting has the following features.

(i) The equilibrium of the game with auditing is unique.

(ii) If the test is strong (α > α∗) then the equilibrium has the one-stage structure.

(iii) If the test is weak (α < α∗), then a threshold σ∗ ∈ (0, 1) exists such that

– if the test is weak and σ < σ∗, then the equilibrium has the one-stage structure.

– if the test is weak and σ > σ∗, then the equilibrium has the two-stage structure.

At the transition time between the first and second stage, +tA > 0, the principal’s

belief that the agent is ethical is σ∗.
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Figure 3: Illustration of Proposition 7.1. Parameters are identical in both figures, except

for σ. The test is weak. In the left panel, σ < σ∗ and equilibrium has a one-stage structure.

In the right panel, σ > σ∗ and equilibrium has a two-stage structure. Graphs were generated

from the closed-form characterization in the Appendix.

While Lemma 7.3 suggests a link between the dynamics of auditing and trust, Proposition

7.1 characterizes this connection explicitly. In equilibrium, the only role of a strong test is to

identify and reject fake projects. Recognizing that a fake is likely to be exposed by the test,

the agent treads lightly, faking at a low rate. As trust grows, the principal gives the agent

additional leeway, checking his work less often, and once she becomes confident that he is

ethical, not at all. Similar dynamics can also arise with a weak test, but only if initial trust

exceeds a critical threshold, σ < σ∗. At low levels of trust a weak test is used to identify

rare real projects that would otherwise be rejected, and the growth of trust increases the

probability of testing. At time +tA, trust reaches the critical level σ∗, the testing probability

reaches 1, and the “regime” changes: the principal gives the agent the benefit of the doubt,

switching from default rejection to acceptance, the perceived faking rate drops, and the role

of testing flips from identifying real projects for approval to identifying fakes for rejection.

To understand auditing’s impact on the principal’s payoff, first suppose the equilibrium has

the one-stage structure. In this case, g(t) = θ1 and ν(t) = µ1 over the entire phase of doubt.

Thus, the agent cheats less aggressively than in the main model, at perceived rate µ1 < µ

and the belief that an arrival is real is higher, θ1 > θ. Furthermore, for any arrival during

the phase of doubt, the principal is indifferent between approving and auditing, and thus

her expected payoff is the same as if she approves. Thus, when the equilibrium has the

one-stage structure, the phase of doubt is longer than in the main model, but any arrival

during this phase generates an expected payoff to the principal of θ1− θ. This is identical to

delegating to a more cautious proxy, +θ = θ1, with one crucial difference. Under delegation, a

submission during the phase of doubt yields the principal aD(t)(θ1 − θ). Because the proxy

27



approves with probability aD(t) < 1 during the phase of doubt, the principal prefers auditing

to delegating to such an evaluator.

In the two-stage equilibrium, an additional complication arises. In the second stage (mixing

with default approval), the same basic tradeoff applies—the slowdown in cheating increases

the principal’s surplus from an arrival, but delays the onset of the phase of credibility.

However, during the first stage (mixing with default rejection) the principal is indifferent

between testing and rejection, and therefore obtains no expected surplus. At the same time,

the agent cheats rapidly during the first stage (i.e., µ0 > µ > µ1), reducing the duration of

the phase of doubt. The tradeoff in the initial default rejection stage is similar to delegating

to a less cautious evaluator with +θ = θ0, except that the principal’s expected payoff from a

submission under auditing is 0 and under delegation is aD(t)(θ0 − θ) < 0.

Building on these observations, in the next proposition we show that the principal always

benefits from the ability to audit. It is important to note that in equilibrium, the principal

is indifferent between auditing and her default action at all times in the phase of doubt.

Therefore, the value of information from conducting an audit is exactly equal to its cost.

Thus, the normative gains for the principal do not come directly from her ability to acquire

information about the project. Rather, these gains come indirectly, via the effect on the

strategic agent’s incentive to commit fraud.

Proposition 7.2 (Normative Analysis of Auditing.). In the equilibrium with auditing, the

principal’s and ethical agent’s payoffs are strictly higher than in the equilibrium of the baseline

model, and the strategic agent’s payoff is higher if σ is sufficiently large.

Both types of agent can benefit when the principal has the ability to audit a submission.

Because the ethical agent only submits a real project, when the principal mixes with default

acceptance his projects are always approved. Thus, when the equilibrium has the one-stage

structure, the ethical agent gets his first best payoff. Similarly, in the two-stage equilibrium,

the ethical agent’s projects are always approved past time +tA, but at t < +tA the ethical agent’s

project is only approved when it is tested. It is relatively straightforward to show that in

the two-stage structure, the probability of testing for t < +tA is larger than the probability

of acceptance in the baseline model. Thus, for all possible times, the probability that a

real project is approved is higher in the equilibrium with auditing than in the main model.

Consequently, the ethical agent’s equilibrium payoff is also higher.

More remarkably, the increased probability that a real project is accepted under auditing

may also benefit the strategic agent. To see this most clearly, suppose that σ → 1, so that

the phase of doubt becomes unbounded, both in the equilibrium of the baseline model and

the auditing model. In this case, the strategic agent is indifferent in equilibrium over all

possible cheating times in R+, and his equilibrium payoff is therefore the same as if he never
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cheats (and the principal follows her equilibrium strategy). But if the strategic agent never

cheats, and the probability that a real arrival is accepted is higher with auditing, then the

strategic type’s real arrivals are also more likely to be approved. Thus, when σ is large, the

strategic type also has a higher payoff with auditing than without, and the existence of the

auditing technology generates a Pareto improvement.

8 Conclusion

In this paper we investigate a dynamic model of fraud and the evolution of trust in which

malfeasance is motivated by desire for a short-term gain. A principal with limited power of

commitment faces an agent whose type — ethical or strategic — is private information. Both

types of agent would like to complete the project quickly. However, producing a real project

takes a positive and uncertain amount of time, whereas a fake project can be fabricated

instantly. An ethical agent can only develop a real project, while a strategic agent chooses

between developing a real project and producing a fake one.

The key force in our analysis is the growth of trust over time. Because the strategic agent

can use either the real or fake technology while the ethical agent can only use the real

one, a strategic agent is more likely to generate an arrival at each time (and strictly so if

the likelihood of fraud is non-zero). Thus, as time passes without an arrival, the principal

believes that the agent is more likely ethical and trust grows. This effect interacts with the

strategic agent’s incentive to commit fraud and shapes the equilibrium in the main model,

and the delegation and auditing extensions. In the main model, the growth of trust generates

a finite phase of doubt, which allows the principal to benefit from the interaction. In the

delegation extension, the evolution of trust generates costs for increasing caution which

affect the principal’s optimal evaluator. The results of the auditing section highlight the link

between the principal’s auditing strategy and the level of trust in the relationship, revealing

novel dynamics. This force also introduces subtlety into the normative analysis, ensuring

that even a weak test benefits the principal.

In our analysis, the motivation to commit fraud is rooted in the agent’s time-preference,

deriving either from intrinsic impatience or a constant hazard that the relationship will end

exogenously. The agent commits fraud in order to accelerate the arrival of his reward from

project approval. Of course, fraud can be motivated by other forces. For example, if there is

a positive probability that the real technology may never deliver an arrival, then the agent’s

pessimism about the viability of the real technology grows over time. If enough time passes,

the agent might resort to faking because he doubts that a real project can ever be produced.

A related incentive to commit fraud is generated by a deadline. As a deadline approaches,
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the probability of meeting it by honest means decreases, and the agent may resort to fraud

in order to do so. In a somewhat different vein, an agent may be tempted to fake in order to

improve or maintain a reputation. For example, if there is uncertainty about the arrival rate

of the agent’s real technology, then an agent who would like to be perceived as “talented”

might want to fake an arrival in order to affect the belief about his ability. With relatively

straightforward modifications, each of these alternatives can be analyzed within the general

framework we present here, and we intend to do so in future work.
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A Proofs

Flow cost for real technology. Suppose that the real technology imposes flow cost c on

the agent and the agent pays this flow cost until either (i) he has a real arrival, at rate λ,

(ii) the game exogenously ends, at rate ρ, (iii) he submits a fake. Equation 3 becomes,

uc(t) =

% t

0

λ exp(−(ρ+ λ)s)(a(s)− cs)− ρ exp(−(ρ+ λ)s)cs ds+ exp(−(ρ+ λ)t)(a(t)− ct− φ)

= u(t)− c(

% t

0

(λ+ ρ) exp(−(ρ+ λ)s)s ds+ exp(−(ρ+ λ)t)t),

where u(t) (as in (3)) is the agent’s payoff function when c = 0. Note that
% t

0

(λ+ ρ) exp(−(ρ+ λ)s)s ds+ exp(−(ρ+ λ)t)t = K − exp(−(ρ+ λ)t)

λ+ ρ
,

where K does not depend on t. Thus,

uc(t) =

% t

0

λ exp(−(ρ+ λ)s)a(s)ds+ exp(−(ρ+ λ)t)(a(t)− (φ− c

λ+ ρ
))− cK.

Thus, the model with flow cost is strategically equivalent to the model without flow cost,

with a smaller value of φ.

A.1 Proofs for Baseline Model

Proof of Lemma 4.1. We derive the probability distributions for the time of any submission

and the time of submission for a real project. If only the authentic technology is used, then

the submission time for a real project is TR ∼ H(t) ≡ 1− exp(−λt). The waiting time for a

fake project is TF ∼ F (t). The overall waiting time for a submission is

T = (1− σ)TR + σmin{TR, TF}.

An ethical agent only uses the real technology, while a strategic agent uses the minimum of

the real and fake waiting time. Therefore, the CDF of the arrival time for a submission is

W (t) = (1− σ)H(t) + σ(H(t) + F (t)− F (t)H(t)) = H(t) + σF (t)(1−H(t))

= 1− exp(−λt)(1− σF (t)),

with associated density w(t) = exp(−λt)[λ(1− σF (t)) + σf(t)]. Using similar reasoning, the

waiting time for a real arrival is distributed according to

WA(t) = (1− σ)H(t) + σ

% t

0

h(s)(1− F (s)) ds

= (1− σ)(1− exp(−λt)) + σ

% t

0

λ exp(−λs)(1− F (s)) ds.
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If agent is ethical, a real project arrives before time t with probability H(t). If agent is

strategic, then a real project arrives before time t if a real arrival occurs at any s ≤ t and the

fake arrival takes longer than s. Integrating over s ≤ t yields the expression. The density of

the waiting time for a real arrival is therefore,

wA(t) = λ exp(−λt)(1− σF (t)).

By Bayes’ Rule, the probability that a submission at time t is real is

g(t) =
wA(t)

w(t)
=

λ(1− σF (t))

λ(1− σF (t)) + σf(t)
.

Dividing numerator and denominator by 1− σF (t) yields the desired result.

Proof of Lemma 4.2. We verify that the prescribed behavior is an equilibrium when φ > &φ.
Suppose a(t) = 1 for all t ≥ 0. Substituting into (3) and evaluating gives u′(t) > 0 ⇐⇒
φ > &φ. Thus, the agent’s best response to a(·) = 1 is never to submit a fake. Furthermore,

because the agent never fakes, we have g(t) = 1 for all t ≥ 0. From (2), we have a(·) = 1.

We verify uniqueness with the following steps.

Step 1. We show that the agent’s mixed strategy cannot have a mass point. If such mass

point exists at t, then g(t) = a(t) = 0. An elementary calculation implies that u(t) < u(∞),

and thus faking at t is not a best response.

Step 2. We show that there exists some finite t∗ such that a(t) = 1 and f(t) = 0 for

t ≥ t∗. Integrability implies limt→∞ f(t) = 0. Furthermore, 1 − σF (t) ≥ 1 − σ, and hence,

limt→∞ ν(t) = 0. It follows that there exists t∗ such that, ν(t) < θ for t > t∗. From (2), we

have a(t) = 1 for t > t∗. Substituting into (3) and differentiating at t > t∗, we find that

u′(t) > 0 ⇐⇒ φ > &φ. Hence, u(t) < u(∞) for t > t∗. By implication, f(t) = 0 for such t.

Let t be sup{t : f(t) > 0}. From Step 2, we have t < ∞.

Step 3. We show that no equilibrium with faking exists. If t = 0 and faking occurs in

equilibrium, then f(0) > 0, contradicting Step 1. Therefore if such an equilibrium exists,

then it must have t > 0. Suppose this is the case. By definition of t, for any small ε, there

exists t ∈ (t − ε, t] such that f(t) > 0. For any such t we have that the agent’s equilibrium

payoff must be

u(t) =

% t

0

λ exp(−(ρ+ λ)s)a(s) ds+ exp(−(ρ+ λ)t)(a(t)− φ).

This must be at least as large as

u(∞) =

% t

0

λ exp(−(ρ+λ)s)a(s) ds+

% t

t

λ exp(−(ρ+λ)s)a(s) ds+

% ∞

t

λ exp(−(ρ+λ)s) ds.
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Thus, for any choice of ε and a corresponding t, we have

exp(−(ρ+ λ)t)(a(t)− φ) ≥
% t

t

λ exp(−(ρ+ λ)s)a(s) ds+

% ∞

t

λ exp(−(ρ+ λ)s) ds.

Since exp(−(ρ+ λ)t) is decreasing, a(·) ∈ [0, 1], we have

exp(−(ρ+ λ)(t− ε))(1− φ) ≥
% ∞

t

λ exp(−(ρ+ λ)s) ds.

Integrating and simplifying, we have

exp((ρ+ λ)ε))(1− φ) ≥ (1− &φ),

for any ε > 0. Choosing ε ≈ 0 implies that φ < &φ, contradicting the maintained hypothesis.

Proof of Lemma 4.3. We prove several steps which we then combine.

Step 1. We show that a(t) ≥ φ for all t ≥ 0. By way of contradiction, consider some t ≥ 0

and suppose that a(t) < φ. Because a(t) − φ < 0, and
,∞
t

λ exp{−(ρ + λ)s}a(s)ds ≥ 0,

submitting a fake at time t is worse for the strategic agent than never submitting a fake,

that is u(t) < u(∞). It follows that, ν(t) = 0, which implies g(t) = 1, and hence a(t) = 1 by

(2). Since we assumed a(t) < φ, we find that φ > 1, a contradiction.

Step 2. We show f(t) = 0 =⇒ a(t) = 1. This follows from f(t) = 0 =⇒ ν(t) = 0 =⇒
g(t) = 1 =⇒ a(t) = 1, by (2).

Step 3. We show that if a(t) = 1, then f(t′) = 0 and a(t′) = 1 for all t′ > t. Suppose

a(t) = 1. Then for all t′ > t we have,

u(t′)− u(t) =

% t′

t

λ exp(−(ρ+ λ)s)a(s) ds+ exp(−(ρ+ λ)t′)(a(t′)− φ)− exp(−(ρ+ λ)t)(1− φ)

≤
% t′

t

λ exp(−(ρ+ λ)s) ds+ exp(−(ρ+ λ)t′)(1− φ)− exp(−(ρ+ λ)t)(1− φ)

=

'
φ− ρ

ρ+ λ

(
(exp(−(ρ+ λ)t)− exp(−(ρ+ λ)t′)) < 0,

where the last inequality follows because φ < &φ and t′ > t. Therefore, the agent receives a

strictly higher payoff from submitting a fake at t than at any t′ > t. This implies f(t′) = 0

which implies ν(t′) = 0 which implies g(t′) = 1 and by (2) a(t′) = 1.

For the rest of the proof, let t ≡ inf{t : a(t) = 1} or t = ∞ if a(t) < 1 for all t ≥ 0.

Step 4. We show that if t < t, then a(t) ∈ [φ, 1) and f(t) > 0. That a(t) < 1 follows from

Step 3 and the definition of t. That a(t) ≥ φ follows from Step 1. From the principal’s

indifference condition (2), we get ν(t) = λ(1− θ)/θ > 0. Hence f(t) > 0.
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Step 5. We show that F (·) has no mass point for any t < ∞. If F (·) has a mass point at t,

then ν(t) = ∞, and hence, a(t) = 0, which contradicts Step 1.

Step 6. We show that t ∈ (0,∞). first suppose t = 0. Then a(t) = 1 for all t ≥ 0 by Step 3.

Substituting into (3) and simplifying yields u′(t) < 0 ⇐⇒ φ < &φ. Hence, it is optimal for

the agent to submit a fake with probability 1 at t = 0. From (2), a(0) = 0 is sequentially

rational, a contradiction. Next, suppose that t = ∞, i.e., for all t we have f(t) > 0. From

Step 4, we have a(t) ∈ (0, 1) for all t. Hence, ν(t) = λ(1 − θ)/θ for all t. By implication,

f(t) = (1 − σF (t))λ(1 − θ)/(σθ) ≥ (1 − σ)λ(1 − θ)/(σθ) > 0. Thus the integral of f(·) is

unbounded, a contradiction.

Proof of (i). This follows from Steps 3, 4, 5, and 6.

Proof of (ii). This follows from Steps 3 and 6.

Step 7. We show that a(·) is continuous at t. Note that for t > t we have limt→t a(t) =

a(t) = 1. We seek to show that for t < t, we have limt→t a(t) = 1. Consider t < t. Because

f(t) > 0, we must have u(t) ≥ u(t). Hence,

u(t)− u(t) =

% t

t

λ exp(−(ρ+ λ)s)a(s) ds+ exp(−(ρ+ λ)t)(1− φ)− exp(−(ρ+ λ)t)(a(t)− φ) ≤ 0

Because a(·) is bounded, in the limit as t → t, we have limt→t{u(t) − u(t)} = exp(−(ρ +

λ)t)(1− limt→t a(t)) ≤ 0. Because a(t) ≤ 1 for all t, we have limt→t a(t) = 1.

Step 8. We show that for t < t, a(t) is continuous, differentiable, and strictly increasing.

Let t, t′ < t. Because t, t′ < t, from Claim (i) we have f(t), f(t′) > 0. Hence, u(t′) = u(t).

Therefore,

0 = u(t′)− u(t)

=

% t′

t

λ exp(−(ρ+ λ)s)a(s) ds+ exp(−(ρ+ λ)t′)(a(t′)− φ)− exp(−(ρ+ λ)t)(a(t)− φ)

=

% t′

t

λ exp(−(ρ+ λ)s)a(s) dt+ [exp(−(ρ+ λ)t′)− exp(−(ρ+ λ)t)](a(t′)− φ)

+ exp(−(ρ+ λ)t)(a(t′)− a(t)).

Because the integrand above is bounded, taking the limit as t′ → t yields a(t′) → a(t).

Hence, a(t) is continuous.

To show that a(t) is differentiable, divide the preceding equation by t′ − t to obtain,

, t′

t
λ exp(−(ρ+ λ)s)a(s) ds

t′ − t
+

exp(−(ρ+ λ)t′)− exp(−(ρ+ λ)t)

t′ − t
(a(t′)− φ)

+ exp(−(ρ+ λ)t)
a(t′)− a(t)

t′ − t
= 0.
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Because a(·) is continuous, the limit as t′ → t gives

λ exp(−(ρ+ λ)t)a(t)− (ρ+ λ) exp(−(ρ+ λ)t)(a(t)− φ) + exp(−(ρ+ λ)t) lim
t′→t

a(t′)− a(t)

t′ − t
= 0.

Hence the derivative of a(·) exists at t. Furthermore, from this equation we have,

a′(t) = (ρ+ λ)(a(t)− φ)− λa(t) = (ρ+ λ)[a(t)
ρ

ρ+ λ
− φ] = (ρ+ λ)[a(t)&φ− φ].

It follows that a(t) does not change monotonicity for any t ∈ (0, t). So it is either constant,

strictly increasing, or strictly decreasing. Suppose a(t) is constant or strictly decreasing for

all t < t. It follows that a(t) ≤ φ/&φ for all t < t. Because φ/&φ < 1, we have limt→t a(t) < 1,

contradicting Step 7.

Proof of (iii). This follows from Steps 7 and 8.

Proof of Proposition 4.1. Strategies. The agent must be indifferent about submitting at all

times t ∈ (0, t) and a(·) is differentiable. Therefore, for such t,

u′(t) = exp(−(ρ+ λ)t){λa(t)− (ρ+ λ)(a(t)− φ) + a′(t)}
= exp(−(ρ+ λ)t){a′(t)− ρa(t) + φ(ρ+ λ)} = 0,

and hence, for t ∈ [0, t], we have a(t) = φ(1 + λ
ρ
) + κ1 exp(ρt) for some integration constant

κ1 > 0. Because a(t) ∈ (0, 1) for t ∈ (0, t), we also have

g(t) = θ =⇒ ν(t) = µ =⇒ F (t) =
1

σ
(1− κ2 exp(−µt)),

where κ2 is another integration constant. Note that the agent’s mixed strategy cannot have

a mass point, and hence F (0) = 0, which implies κ2 = 1. It follows that

t = − ln(1− σ)
θ

λ(1− θ)
.

From the boundary condition a(t) = 1 we find

κ1 = (1− φ(1 +
λ

ρ
)) exp(−ρt) = (1− φ(1 +

λ

ρ
))(1− σ)

ρθ
λ(1−θ) .

Observing that φ(1 + λ
ρ
) = φ

!φ
completes the characterization of strategies.

Beliefs. Obvious.

Payoffs.

Strategic Agent. The strategic agent’s payoff is identical for all cheating times t ∈ [0, t),

and hence, US = a(0)− φ. Simplifying, we have

US =
φ(ρ+ λ)

ρ
+ (1− φ(ρ+ λ)

ρ
) exp{−ρt}− φ =

φλ

ρ
+ (1− φ− φλ

ρ
)(1− σ)

ρ
µ .
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Ethical Agent. Payoff of the ethical agent is

UE =

% ∞

0

λ exp(−(ρ+ λ)t)a(t) dt = lim
t→∞

u(t).

Recall that u(t) = US on [0, t] and in particular u(t) = US. Furthermore, since a(t) = 1 on

[t,∞), differentiation reveals that for t ∈ (t,∞) we have

u′(t) = −(&φ− φ)(ρ+ λ) exp(−(ρ+ λ)t).

It follows that

UE = lim
t→∞

u(t) = u(t) +

% ∞

t

u′(t) dt = US − (&φ− φ) exp(−(ρ+ λ)t).

Principal. The principal is indifferent between accepting and rejecting for all t < t, and

therefore her expected payoff is 0 if an arrival occurs before time t. Furthermore, if the agent

is strategic, then an arrival will certainly occur before time t. If the arrival occurs after t,

then it is real and will be accepted with probability 1. Hence,

V = (1− θ)(1− σ)

% ∞

t

λ exp{−(ρ+ λ)t} dt = (1− θ)(1− σ)
λ

ρ+ λ
exp{−(ρ+ λ)t}

A.2 Proofs for Delegation

Principal’s Payoff Function. In the equilibrium with delegation, the agent’s mixed strategy

FD(·) is such that

(1− σFD(t)) = exp(−λ
1− +θ
+θ

t) and σfD(t) = λ
1− +θ
+θ

exp(−λ
1− +θ
+θ

t),

with support on [0, tD] where

tD ≡ −
+θ ln(1− σ)

λ(1− +θ)
,

the evaluator’s equilibrium acceptance strategy is

aD(t) =
φ

&φ
+ (1− φ

&φ
) exp{−ρ(tD − t)},

and the belief that an arrival is authentic inside the phase of doubt is gD(t) = +θ. Substituting,
we find that

wD(t) = exp(−λt)[λ(1− σFD(t)) + σfD(t)] = exp(−λt)λ(1 +
1− +θ
+θ

) exp(−λ
1− +θ
+θ

t) =
λ

+θ
exp(−λ

+θ
t).
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Proof of Proposition 6.1. We show that ∂VD/∂+θ ]"θ=θ > 0, which implies that VD(·|θ) is in-

creasing at +θ = θ. Differentiate the principal’s payoff with respect to +θ,

∂VD

∂+θ
=

% tD

0

d

d+θ

)
exp(−(ρ+

λ

+θ
)t)

λ

+θ
aD(t)

*
(+θ − θ)dt

+

% tD

0

exp(−(ρ+
λ

+θ
)t)

λ

+θ
aD(t)dt+ exp(−(ρ+

λ

+θ
)tD)

λ

+θ
aD(tD)(+θ − θ)

dtD

d+θ

− (1− θ)(1− σ)λ exp(−(ρ+ λ)tD)
dtD

d+θ

Note that
dtD

d+θ
=

− ln(1− σ)

λ

1

(1− +θ)2
=

tD
+θ(1− +θ)

.

Next, evaluate this derivative at the principal’s preference parameter, +θ = θ, which implies,

tD = t and aD(t) = a(t). We have

∂VD

∂+θ

-
"θ=θ

=

% t

0

exp(−(ρ+
λ

θ
)t)

λ

θ
a(t)dt− (1− θ)(1− σ)λ exp(−(ρ+ λ)t)

t

θ(1− θ)

=

% t

0

exp(−(ρ+
λ

θ
)t)

λ

θ
a(t)dt− (1− σ)

λ

θ
exp(−(ρ+ λ)t)t.

Note that

(1− σ) exp(−(ρ+ λ)t) = exp{(1 + (ρ+ λ)
θ

λ(1− θ)
) ln(1− σ)} = exp{−(

λ

θ
+ ρ)(− θ

λ(1− θ)
) ln(1− σ)}

= exp{−(
λ

θ
+ ρ)t},

and hence,

∂VD

∂+θ

-
"θ=θ

=

% t

0

exp(−(ρ+
λ

θ
)t)

λ

θ
a(t)dt− (1− θ)(1− σ)λ exp(−(ρ+ λ)t)

t

θ(1− θ)

=

% t

0

exp(−(ρ+
λ

θ
)t)

λ

θ
a(t)dt− λ

θ
exp(−(ρ+

λ

θ
)t)t.

Thus,

∂VD

∂+θ

-
"θ=θ

> 0 ⇐⇒
, t

0
exp(−(ρ+ λ

θ
)t)λ

θ
a(t)dt

t
> exp(−(ρ+

λ

θ
)t)

λ

θ
a(t).

Thus, the derivative in question is positive if the average value of Γ(t) ≡ exp(−(ρ+ λ
θ
)t)λ

θ
a(t)

on interval [0, t] is larger than Γ(t). To complete the proof, we show that Γ(·) is a decreasing
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function, which implies that the preceding inequality holds. Substituting a(·) and simplify-

ing, we have

Γ(t) =
λ

θ
[
φ

&φ
exp(−(ρ+

λ

θ
)t) + (1− φ

&φ
) exp(−ρ(t− t)− (ρ+

λ

θ
)t)]

=
λ

θ
[
φ

&φ
exp(−(ρ+

λ

θ
)t) + (1− φ

&φ
) exp(−ρt− λ

θ
t)].

Because Γ(t) is the sum of two decreasing functions, it is itself decreasing.

Proof of Proposition 6.2. Step 1. We evaluate the integrals in the principal’s payoff function

VD(+θ|θ) =
% tD

0

exp(−(ρ+
λ

+θ
)t)

λ

+θ
(+θ − θ)aD(t)dt+ (1− θ)(1− σ)

% ∞

tD

λ exp(−(ρ+ λ)t)dt.

The first integral is somewhat long, but it is straightforward to verify that
%

exp(−(ρ+
λ

+θ
)t)

λ

+θ
(+θ − θ)aD(t)dt = −(+θ − θ)

)φ
&φ

λ

λ+ +θρ
exp(−(ρ+

λ

+θ
)t) + (1− φ

φ̂
) exp(−λ

+θ
t− tDρ)

*
.

Evaluating and simplifying the definite integral, we have

% tD

0

exp(−(ρ+
λ

+θ
)t)

λ

+θ
(+θ − θ)aD(t)dt = (+θ − θ)(

φ

&φ
)

λ

λ+ +θρ
+

(+θ − θ)(1− φ

&φ
) exp(−ρtD)− (+θ − θ)(

λ

λ+ +θρ
+ (1− φ

&φ
)

+θρ
λ+ +θρ

) exp(−(ρ+
λ

+θ
)tD).

For the second integral, we have

(1− θ)(1− σ)

% ∞

tD

λ exp(−(ρ+ λ)t)dt = (1− θ)
λ

λ+ ρ
(1− σ) exp(−(ρ+ λ)tD).

Note that

(1− σ) exp(−(ρ+ λ)tD) = exp{(1 + (ρ+ λ)
+θ

λ(1− +θ)
) ln(1− σ)}

= exp{−(
λ

+θ
+ ρ)(−

+θ
λ(1− +θ)

) ln(1− σ)} = exp{−(
λ

+θ
+ ρ)tD}.

Thus, we have

(1− θ)(1− σ)

% ∞

tD

λ exp(−(ρ+ λ)t)dt = (1− θ)
λ

λ+ ρ
exp(−(ρ+

λ

+θ
)tD).

Next, substitute tD. Noting that

exp(−ρtD) = (1− σ)
ρ!θ

λ(1−!θ)

exp(−(ρ+
λ

+θ
)tD) = (1− σ)

λ+ρ!θ
λ(1−!θ) .
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Combining these calculations we have

VD(+θ|θ) =(+θ − θ)(
φ

&φ
)

λ

λ+ +θρ
+ (+θ − θ)(1− φ

&φ
)(1− σ)

ρ!θ
λ(1−!θ)+

)
(1− θ)

λ

λ+ ρ
− (+θ − θ)(

λ

λ+ +θρ
+ (1− φ

&φ
)

+θρ
λ+ +θρ

)
*
(1− σ)

λ+ρ!θ
λ(1−!θ)

To simplify notation, we write the payoff function as

VD(+θ|θ) = K1(+θ) +K2(+θ)(1− σ)
ρ!θ

λ(1−!θ) +K3(+θ)(1− σ)
λ+ρ!θ
λ(1−!θ) ,

where

K1(+θ) ≡ (+θ − θ)(
φ

&φ
)

λ

λ+ +θρ

K2(+θ) ≡ (+θ − θ)(1− φ

&φ
)

K3(+θ) ≡ (1− θ)
λ

λ+ ρ
− (+θ − θ)(

λ

λ+ +θρ
+ (1− φ

&φ
)

+θρ
λ+ +θρ

).

Step 2. We show that VD(·|θ) is increasing in +θ if σ is sufficiently large. That it is optimal

to delegate to the most cautious evaluator, +θ = 1, follows immediately. Differentiating with

respect to +θ, we have

∂VD

∂+θ
=K ′

1(
+θ) +K ′

2(
+θ)(1− σ)

ρ!θ
λ(1−!θ) +K2(+θ)

d

d+θ
(1− σ)

ρ!θ
λ(1−!θ)+

K ′
3(
+θ)(1− σ)

λ+ρ!θ
λ(1−!θ) +K3(+θ)

d

d+θ
(1− σ)

λ+ρ!θ
λ(1−!θ) . (A.1)

Note that

K ′
1(
+θ) = (

λφ

&φ
)

λ+ θρ

(λ+ +θρ)2
d

d+θ
(1− σ)

ρ!θ
λ(1−!θ) =

ρ

λ(1− +θ)2
(1− σ)

ρ!θ
λ(1−!θ) ln(1− σ)

d

d+θ
(1− σ)

λ+ρ!θ
λ(1−!θ) =

λ+ ρ

λ(1− +θ)2
(1− σ)

λ+ρ!θ
λ(1−!θ) ln(1− σ) (A.2)

Next, we take the limit as σ → 1−. Noting that limσ→1−(1−σ)a ln(1−σ) = 0 for any a > 0,

we have

lim
σ→1−

∂VD

∂+θ
= K ′

1(
+θ) > 0.
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It follows that for all σ sufficiently close to 1, we have

∂VD

∂+θ
> 0.

Step 3. We show that for σ below a threshold, VD(θ|θ) > VD(1|θ); that is, +θ = 1 is suboptimal.

Note that the exponents on (1−σ) are unbounded at +θ = 1, and thus the last two terms are

zero at +θ = 1. It follows that

VD(1|θ) = K1(1) = (1− θ)
φ

&φ
λ

λ+ ρ
.

Meanwhile, via direct substitution, we have

VD(θ|θ) = (1− θ)
λ

λ+ ρ
(1− σ)

λ+ρθ
λ(1−θ) .

Therefore, we have the following equivalences

σ < 1− (
φ

&φ
)
λ(1−θ)
λ+ρθ ⇐⇒ (1− σ)

λ+ρθ
λ(1−θ) >

φ

&φ
⇐⇒ VD(θ|θ) > VD(1|θ).

Step 4. We show that if σ is sufficiently close to 0, then VD(+θ|θ) < VD(θ|θ) for all +θ < θ.

Consider the difference in payoffs,

VD(+θ|θ)− VD(θ|θ) =

K1(+θ) +K2(+θ)(1− σ)
ρ!θ

λ(1−!θ) +K3(+θ)(1− σ)
λ+ρ!θ
λ(1−!θ) − (1− θ)

λ

λ+ ρ
(1− σ)

λ+ρθ
λ(1−θ) .

For the rest of the proof, we treat the payoff difference as a function of σ, and therefore, the

exponents are constants. To simplify notation, let

a2 ≡
ρ+θ

λ(1− +θ)
a3 ≡

λ+ ρ+θ
λ(1− +θ)

a4 ≡
λ+ ρθ

λ(1− θ)

Treating σ as the variable, perform a second order Taylor series expansion,

VD(+θ|θ)− VD(θ|θ) =

K1(+θ) +K2(+θ)(1− a2σ +
a2(a2 − 1)

2
σ2) +K3(+θ)(1− a3σ +

a3(a3 − 1)

2
σ2)

− (1− θ)
λ

λ+ ρ
(1− a4σ +

a4(a4 − 1)

2
σ2).
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With some algebraic manipulation, we have

K1(+θ) +K2(+θ) +K3(+θ)− (1− θ)
λ

λ+ ρ
= 0

K2(+θ)a2 +K3(+θ)a3 − (1− θ)
λ

λ+ ρ
a4 = 0

K2(+θ)a2(a2 − 1) +K3(+θ)a3(a3 − 1)− (1− θ)
λ

λ+ ρ
a4(a4 − 1) =

− θ − +θ
λ(1− +θ)2

{λ+ θρ− (ρ(1− φ

&φ
) + λ+ θ

φ

&φ
)+θ}.

Thus, the zero and first order terms of the Taylor expansion are 0. Therefore, up to second

order

VD(+θ|θ)− VD(θ|θ) ≈ − θ − +θ
2λ(1− +θ)2

{λ+ θρ− (ρ(1− φ

&φ
) + λ+ θ

φ

&φ
)+θ}σ2.

Therefore, for small values of σ, the sign of the payoff difference is determined by the sign

of the coefficient,

− θ − +θ
2λ(1− +θ)2. /0 1

A

(λ+ θρ− (ρ(1− φ

&φ
) + λ+ θ

φ

&φ
)+θ)

. /0 1
B

.

For +θ < θ, term A is positive. Consider term B. Note that for +θ < θ we have

λ+ θρ− (ρ(1− φ

&φ
) + λ+ θ

φ

&φ
)+θ >

λ+ θρ− (ρ(1− φ

&φ
) + λ+ θ

φ

&φ
)θ =

(1− θ)(λ+ θρ
φ

&φ
) > 0.

Thus, term B is also positive. Thus, the coefficient in question is negative and the payoff

difference is negative for σ sufficiently small.

The first claim of the proposition is proved in Step 2. The second claim follows from Steps 3

and 4, which show that the optimal +θ ∈ [θ, 1) and Proposition A.1, which implies that +θ = θ

is suboptimal. The third claim is proved in Step 3.

Proof of Proposition 6.3. . The result follows immediately from Step 3 in the proof of Propo-

sition 6.2, coupled with the observation that VD(·|θ) is continuous in +θ.
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A.3 Proofs for Auditing

Proof of Lemma 7.1. Suppose the principal audits a submission. She will obviously reject

conditional on failing the test. If the principal weakly prefers rejection conditional on passing

the test, then she should have rejected the project upon submission, without incurring the

auditing cost k, because rejection is optimal regardless of the test outcome.

Proof of Lemma 7.2. Suppose that there were some time interval (t1, t2) over which p(t) = 1.

For such times, a real arrival is always tested and approved, while a fake is approved whenever

it generates a false pass. Therefore, for t ∈ (t1, t2), the agent’s expected payoff of waiting

until t to submit a fake is

uA(t) =

% t

0

exp{−(λ+ ρ)s}λds+ exp{−(λ+ ρ)t}(1− α− φ).

By implication,

u′
A(t) = exp(−(ρ+ λ)t)(ρ+ λ)(α− (&φ− φ)).

Thus, for α ∕= &φ − φ, the agent’s payoff function is strictly monotonic on (t1, t2). By impli-

cation, times t ∈ (t1, t2) are suboptimal cheating times, and hence g(t) = 1. Thus, p(t) = 0

at such times.

Proof of Lemma 7.3. We prove several steps and then combine these to prove the claims in

the lemma.

Let aR(t) ≡ a(t) + p(t), representing the probability that a real arrival is accepted given the

principal’s strategy, and let aF (t) ≡ a(t) + p(t)(1 − α), representing the probability that a

fake arrival is accepted given the principal’s strategy. The agent’s expected payoff of waiting

until time t to submit a fake is

uA(t) ≡
% t

0

exp{−(ρ+ λ)s}λaR(s)ds+ exp{−(ρ+ λ)t}(aF (t)− φ).

Step 1. We show that aF (t) ≥ φ for all t ≥ 0. By way of contradiction, consider some t ≥ 0

and suppose that aF (t) < φ. Because aF (t) − φ < 0, and
,∞
t

exp{−(ρ + λ)s}aR(s)ds ≥ 0,

submitting a fake at time t is worse for the strategic agent than never submitting a fake,

% t

0

exp{−(ρ+ λ)t}λaR(s)ds+ exp{−(ρ+ λ)t}(aF (t)− φ) <

% ∞

0

exp{−(ρ+ λ)t}λaR(s)ds.

Then, ν(t) = 0 which implies g(t) = 1, and hence aF (t) = 1 by (11), contradicting φ < 1.

Step 2. We show f(t) = 0 =⇒ a(t) = 1. This follows from f(t) = 0 =⇒ ν(t) = 0 =⇒
g(t) = 1 =⇒ a(t) = 1, by (11).
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Step 3. We show that if a(t) = 1, then f(t′) = 0 and a(t′) = 1 for all t′ > t. Suppose

a(t) = 1. By implication, aR(t) = aF (t) = 1. For all t′ > t we have,

uA(t
′)− uA(t)

=

% t′

t

λ exp(−(ρ+ λ)s)aR(s) ds+ exp(−(ρ+ λ)t′)(aF (t
′)− φ)− exp(−(ρ+ λ)t)(1− φ)

≤
% t′

t

λ exp(−(ρ+ λ)s) ds+ exp(−(ρ+ λ)t′)(1− φ)− exp(−(ρ+ λ)t)(1− φ)

=
λ

ρ+ λ
(exp(−(ρ+ λ)t)− exp(−(ρ+ λ)t′))− (1− φ)(exp(−(ρ+ λ)t)− exp(−(ρ+ λ)t′))

=

'
φ− ρ

ρ+ λ

(
(exp(−(ρ+ λ)t)− exp(−(ρ+ λ)t′) < 0,

where the last inequality follows because φ < &φ and t′ > t. Therefore, the agent receives a

strictly higher payoff from submitting a fake at t than at any t′ > t. This implies f(t′) = 0

which implies µ(t′) = 0 which implies g(t′) = 1 and by (11) a(t′) = 1.

For the rest of the proof, let tA ≡ inf{t : a(t) = 1} or tA = ∞ if a(t) < 1 for all t ≥ 0.

Step 4. We show that if t < tA, then aF (t) ∈ [φ, 1) and f(t) > 0. Suppose t < tA. Note that

aF (t) = a(t) + p(t)(1 − α) ≤ a(t) + (1 − a(t))(1 − α) = 1 − (1 − a(t))α. From Step 3 and

the definition of tA, we have a(t) < 1. Hence, aF (t) < 1. That aF (t) ≥ φ follows from Step

1. To show that f(t) > 0, note first that aF (t) < 1 implies a(t) < 1. From the principal’s

indifference condition (11), we get g(t) ≤ θ1, and hence, ν(t) ≥ λ(1 − θ1)/θ1 > 0. Hence

f(t) > 0.

Step 5. We show that F (·) has no mass point for any t < ∞. If F (·) has a mass point at

t, then ν(t) = ∞, and hence, g(t) = 0. By implication a(t) = p(t) = 0, yielding aF (t) = 0,

contradicting Step 1.

Step 6. We show that tA ∈ (0,∞). As in the main model, φ < &φ implies that if the principal

approves all submissions, then the agent fakes at t = 0, but then a(0) = 0 is sequentially

rational for the principal, a contradiction.

Next, suppose that tA = ∞. From Step 4, we have aF (t) ∈ (0, 1) for all t. From (11),

we have g(t) ≤ θ1 for all t. Hence, ν(t) ≥ λ(1 − θ1)/θ1 for all t. By implication, f(t) =

(1 − σF (t))λ(1 − θ1)/(σθ1) ≥ (1 − σ)λ(1 − θ1)/(σθ1) > 0. Thus the integral of f(·) is un-

bounded, a contradiction.

Proof of (i). This follows from Steps 3, 4, 5, and 6.

Proof of (ii). This follows from Step 3 and Step 6.

Step 7. We show that aF (·) is continuous at tA and further that limt→tA a(t) = 1 and
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limt→tA p(t) = 0. Note that for t > tA we have limt→tA aF (t) = aF (tA) = 1. We seek to show

that for t < tA, we have limt→tA aF (t) = 1. Consider t < tA. From Step 4 we have f(t) > 0,

and thus u(t) ≥ u(tA). Hence,

uA(tA)− uA(t) =
% tA

t

λ exp(−(ρ+ λ)s)aR(s) ds+ exp(−(ρ+ λ)tA)(1− φ)− exp(−(ρ+ λ)t)(aF (t)− φ) ≤ 0

Because aR(·) is bounded, in the limit as t → tA, we have

lim
t→tA

{u(tA)− u(t)} = exp(−(ρ+ λ)tA)(1− lim
t→tA

aF (t)) ≤ 0.

Because aF (t) ≤ 1 for all t, we have limt→tA aF (t) = 1. By implication, limt→tA [a(t) +

(1 − α)p(t)] = 1. Because a(·) and p(·) are probabilities, we have limt→tA a(t) = 1 and

limt→tA p(t) = 0.

Step 8. We show that aF (t) is continuous for t < tA. Let t, t
′ < tA. Because t, t′ < tA, from

Claim (i) we have f(t), f(t′) > 0. Hence, uA(t
′) = uA(t). Therefore,

0 = uA(t
′)− uA(t)

=

% t′

t

λ exp(−(ρ+ λ)s)aR(s) ds+ exp(−(ρ+ λ)t′)(aF (t
′)− φ)− exp(−(ρ+ λ)t)(aF (t)− φ)

=

% t′

t

λ exp(−(ρ+ λ)s)aR(s) dt+ [exp(−(ρ+ λ)t′)− exp(−(ρ+ λ)t)](aF (t
′)− φ)

+ exp(−(ρ+ λ)t)(aF (t
′)− aF (t)).

Because the integrand above is bounded, taking the limit as t′ → t yields aF (t
′) → aF (t).

Hence, aF (·) is continuous at t < tA.

Step 9. We show that p(t) > 0 for t < tA. Consider t < tA. From Step 4, we have

aF (t) ∈ [φ, 1). By implication, g(t) ∈ [θ0, θ1]. If g(t) ∈ (θ0, θ1), then p(t) = 1 from (11).

Suppose g(t) = θ1. From (11), we have a(t) + p(t) = 1. Note that aF (t) < 1 ⇒ a(t) < 1.

Thus, p(t) > 0. Finally, suppose g(t) = θ0. From (11), we have r(t) + p(t) = 1. Thus,

aF (t) ≥ φ ⇒ p(t) ≥ φ.

Step 10. We show that for t < tA, (i) aF (t) > 1 − α if and only if p(t) ∈ (0, 1) and

a(t) + p(t) = 1, (ii) aF (t) = 1 − α if and only if p(t) = 1, (iii) aF (t) < 1 − α, if and only if

a(t) = 0 and p(t) ∈ (0, 1). From the definition of tA, we have a(t) < 1 for t < tA and from

Step 9, we have p(t) > 0. From (11), when k < k∗ three sequentially rational strategies are

possible for the principal: a(t) + p(t) = 1 with 0 < p(t) < 1, p(t) = 1, or p(t) + r(t) = 1

with 0 < p(t) < 1. If the principal’s best response is a(t) + p(t) = 1 with 0 < p(t) < 1, then

aF (t) = 1−p(t)+p(t)(1−α) = 1−p(t)α. Because 0 < p(t) < 1, we have 1−α < aF (t) < 1. If
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the principal’s best response is p(t) = 1, then aF (t) = 1−α. If the principal’s best response

is p(t) + r(t) = 1 with 0 < p(t) < 1, then aF (t) = p(t)(1 − α). Because p(t) < 1, we have

aF (t) < 1 − α. Note further that from the preceding calculations, (i) aF (t) ∈ (1 − α, 1) is

possible only if the principal’s best response has a(t) + p(t) = 1 and p(t) < 1, (ii) aF (t) = 1

is possible only if the principal’s best response has p(t) = 1, (iii) aF (t) < 1 − α is possible

only if the principal’s best response has 0 < p(t) < 1 and a(t) = 0.

Step 11. We show that for t < tA, functions a(·) and p(·) are continuous. This follows from

Steps 8 and 10.

Step 12. Consider t1 < t2 < tA, such that aF (t) ≥ 1 − α for all t ∈ (t1, t2). We show

that aF (·) is differentiable and is either strictly increasing, strictly decreasing, or constant

on (t1, t2). From Step 10, we have that a(t) + p(t) = 1 for all t ∈ (t1, t2). By implication,

aR(t) = 1 and aF (t) = 1− αp(t) for all such t. Consider t, t′ ∈ (t1, t2). We have

0 = uA(t
′)− uA(t)

=

% t′

t

λ exp(−(ρ+ λ)s) ds+ exp(−(ρ+ λ)t′)(aF (t
′)− φ)− exp(−(ρ+ λ)t)(aF (t)− φ)

=

% t′

t

λ exp(−(ρ+ λ)s) dt+ [exp(−(ρ+ λ)t′)− exp(−(ρ+ λ)t)](aF (t
′)− φ)

+ exp(−(ρ+ λ)t)(aF (t
′)− aF (t)).

Divide by t′ − t, and consider t → t′. We have

λ exp(−(ρ+ λ)t′)− (ρ+ λ) exp(−(ρ+ λ)t′)(aF (t
′)− φ) + exp(−(ρ+ λ)t′) lim

t→t′

aF (t
′)− aF (t)

t′ − t
= 0

It follows that aF (·) is differentiable at t′. In addition,

a′F (t
′) = (ρ+ λ)(aF (t

′)− φ)− λ

⇐⇒ a′F (t
′) = (ρ+ λ)[aF (t

′)− φ− (1− &φ)]
⇐⇒ a′F (t

′) = (ρ+ λ)[aF (t
′)− (1− &φ+ φ)].

Thus, whenever aF (t) > 1 − &φ − φ, we have a′F (t) > 0, and hence, aF (·) is increasing at t.

Conversely, whenever aF (t) < 1− &φ−φ, we have a′F (t) < 0, and hence, aF (·) is decreasing at

t. Furthermore, whenever aF (t) = 1− &φ−φ, we have a′F (t) = 0, and hence, aF (·) is constant
at t. It follows that the derivative of aF (·) cannot change sign on (t1, t2), and therefore aF (·)
is monotone.

Step 13. Consider t1 < t2 < tA, such that aF (t) ≤ 1 − α for all t ∈ [t1, t2]. We show that

aF (·) is differentiable and either strictly increasing, strictly decreasing, or constant on [t1, t2].

Proof is analogous to Step 12.
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Step 14. We show that aF (·) is strictly increasing on [0, tA). First, we show that there exists

a subinterval of [0, tA) over which aF (·) is strictly increasing. From Step 4, we have that

aF (t) < 1 for t < tA. Furthermore, from Step 7, we have aF (t) → 1 as t → tA. By implica-

tion, there exists an interval (t1, t2) such that aF (t) > 1−α for all (t1, t2) and aF (t2) > aF (t1).

From Step 12, aF (·) must be strictly increasing on (t1, t2). Next we show that aF (·) cannot
switch from being strictly increasing to either strictly decreasing or constant. Suppose that

there exists some t at which aF (·) switches from strictly increasing to strictly decreasing or

constant. Suppose that aF (t) > 1−α (the other cases are analogous). By continuity of aF (·),
there exists an interval (t′1, t

′
2) with t′1 < t < t′2, such that aF (t) ≥ 1−α for all t ∈ (t′1, t

′
2). By

Step 12, aF (·) is either strictly increasing, strictly decreasing, or constant on (t′1, t
′
2), and thus

no switch is possible. A similar argument rules out a switch from aF (·) constant or strictly
decreasing to strictly increasing. Thus, we have shown that aF (·) is strictly increasing on

a subinterval of [0, tA), and that it cannot switch from strictly increasing to decreasing or

constant at any t ∈ [0, tA).

Suppose aF (t) < 1 − α for some t ≥ 0. Let +tA denote the unique value of t for which

aF (+tA) = 1 − α (existence and uniqueness of +tA is guaranteed because aF (·) is continuous

and strictly increasing). If aF (t) ≥ 1− α for all t, then let +tA = 0.

Step 15. We show that (i) a(t) > 0 for all t > +tA and (ii) if +tA > 0, then a(t) = 0 for

all t ≤ +tA. Claim (i): From the definition of +tA and Step 14, we have t > +tA ⇒ aF (t) > 1−α.

From Step 10, aF (t) > 1−α ⇒ a(t)+p(t) = 1 and p(t) ∈ (0, 1). Hence, a(t) > 0. Claim (ii):

Suppose +tA > 0. From the definition of +tA and Step 14, we have t ∈ [0,+tA) ⇒ aF (t) < 1−α.

From Step 10, aF (t) < 1− α ⇒ a(t) = 0.

Step 16. We show that +tA < tA. If +tA = 0, then the claim follows from Step 6. Suppose

+tA > 0. From Step 7, we have limt→tA a(t) = 1. By implication, there exists ε1 such that

a(tA− ε) > 0 for all ε ∈ (0, ε1). From Step 15 it follows that tA− ε1 > +tA, and hence, tA > +tA.

Step 17. We show that p(t) is differentiable and decreasing for t ∈ (+tA, tA) and that for such

t, a(t) + p(t) = 1 and a(t) > 0. For such t, Step 15 implies a(t) > 0, and Step 4 implies

aF (t) < 1, which in turn implies a(t) < 1. Thus, we have a(t) ∈ (0, 1). From Step 9, we

have p(t) > 0 for such t. From (11), for k < k∗, a(t) ∈ (0, 1) and p(t) ∈ (0, 1) together

imply a(t) + p(t) = 1. From Step 10, we have aF (t) > 1− α for such t. From Steps 12 and

14, we have that aF (·) is differentiable and strictly increasing for such t. Observing that

aF (t) = 1− p(t) + p(t)(1− α) = 1− αp(t) for such t, we have that p(t) is also differentiable

and strictly decreasing for t ∈ (+tA, tA).

Proof of (iii). From Step 11 and 17, we have that p(·) is continuous, strictly decreasing
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and differentiable for t ∈ (+tA, tA). From Step 7, we have that p(t) → 0 as t → tA. Further-

more, from Step 17, we have that a(t) + p(t) = 1, with a(t) > 0 for t ∈ (+tA, tA).

Step 18. Suppose +tA > 0. We show that limt→"t+A
p(t) = p(+tA) = 1. From Step 15 (ii),

we have that a(t) = 0 for t ∈ [0,+tA). From Step 12, we have aF (t) ≤ 1 − α for t ∈ [0,+tA),
and thus limt→"t−A

aF (t) ≤ 1 − α. From Step 15 (i) we have that a(t) > 0 for t > +tA. From

Step 12, we have aF (t) > 1−α for t > +tA, and thus, limt→"t+A
aF (t) ≥ 1−α. Because aF (·) is

continuous (Step 8), we have 1 − α ≤ limt→"t+A
aF (t) = aF (+tA) = limt→"t−A

aF (t) ≤ 1 − α, and

thus limt→"t+A
aF (t) = aF (+tA) = 1− α. From Step 10, we have limt→"t+A

p(t) = p(+tA) = 1.

Step 19. Suppose +tA > 0. We show that p(·) is differentiable and strictly increasing for

t ∈ [0,+tA). From Step 15 (ii), we have that a(t) = 0 for t ∈ [0,+tA). From Step 12, we have

aF (t) ≤ 1− α for t ∈ [0,+tA). From Steps 13 and 14, we have that aF (·) is differentiable and

strictly increasing on [0,+tA). Because aF (t) < 1 − α for such t, Step 12 implies a(t) = 0

and p(t) ∈ (0, 1). By implication, aF (t) = p(t)(1 − α) for such t. Because aF (·) is strictly

increasing and differentiable on [0,+tA), so is p(·).

Proof of (iv). Suppose +tA > 0. From Step 19, we have that p(·) is differentiable and

strictly increasing for t ∈ [0,+tA). From Step 18, we have that limt→"t+A
p(t) = p(+tA) = 1. By

implication, t < +tA ⇒ p(t) < 1. Furthermore, from Step 15, we have a(t) = 0 for such t.

Hence, for t ∈ [0,+tA) we have p(t) + r(t) = 1, with r(t) > 0.

Next, we provide a complete characterization of the two possible equilibrium structures. We

begin by analyzing the one-stage equilibrium in which the entire phase of doubt involves

default acceptance, corresponding to +tA = 0 in Lemma 7.3. We then analyze the two-stage

equilibrium, in which the phase of doubt consists of a stage of default rejection followed by

a phase of default approval, corresponding to +tA > 0 in Lemma 7.3.

To facilitate analysis, for θi ∈ {θ0, θ1} (as defined in (11)) let

µi ≡ λ
1− θi
θi

ti ≡ − ln(1− σ)

µi

.

Note that µi is the equilibrium cheating rate in the equilibrium of the baseline model when

the principal’s preference parameter is θi, and ti is the duration of the corresponding phase

of doubt. Furthermore, for a weak test let

δA ≡ −
ln(1− α

!φ−φ
)

λ+ ρ
+t ≡ max

2
0,

µ1

µ0

3
t1 − δA

45
.

Note that δA > 0 if and only if the test is weak.

48



Proposition A.1 (One-stage auditing equilibrium.). A one stage auditing equilibrium exists

if and only if (a) the test is strong or (b) the test is weak and +t = 0, and it is characterized

below. Furthermore, no other one stage auditing equilibrium exists.

Strategies. The agent’s cheating time is drawn from distribution function

F (t) =
1

σ
(1− exp(−µ1t))

supported on interval [0, t1]. If t ∈ [0, t1], then the principal mixes between auditing and

outright approval, and the probability of audit is

p(t) =
&φ− φ

α
(1− exp{−(ρ+ λ)(t1 − t)}).

If t ≥ t1, then the principal does not audit and accepts with probability 1.

Beliefs. If t ∈ (0, t1), then g(t) = θ1, and g(t) = 1 otherwise.

Payoffs. The strategic agent’s equilibrium payoff is US
A = 1 − αp(0) − φ. The principal’s

payoff is

VA =

% t1

0

exp{−(ρ+
λ

θ1
)t} λ

θ1
(θ1 − θ)dt+ (1− θ)(1− σ)

% ∞

t1

λ exp{−(ρ+ λ)t}dt.

Proof of Proposition A.1. Consider a single auditing stage in which the principal randomizes

between performing the test and default approval, i.e., the scenario in which +tA = 0 in Lemma

7.3.

Strategies. The principal’s indifference requires the agent to randomize such that g(t) = θ1

for all t ∈ [0, tA). This gives

F (t) =
1

σ
(1− κ1 exp(−µ1t)). (A.3)

Because F (0) = 0 it follows that κ1 = 1, and hence

tA = − ln(1− σ)

µ1

= t1.

Under default approval, a real submission is never rejected. Therefore, the expected utility

to the strategic agent from submitting a fake at time t if a real project does not arrive before

then is

uA(t) =

% t

0

λ exp(−(ρ+ λ)s) ds+ exp(−(ρ+ λ)t)(1− αp(t)− φ).

Ergo, indifference requires

u′(t) = exp(−(ρ+ λ)t)(λ− (ρ+ λ)(1− αp(t)− φ)− αp′(t)) = 0,
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or

(ρ+ λ)αp(t)− αp′(t) = ρ− (ρ+ λ)φ.

Solving yields

p(t) =
&φ− φ

α
+ κ3 exp((ρ+ λ)t). (A.4)

Boundary condition, p(t1) = 0 gives

p(t) =
&φ− φ

α

3
1− exp(−(ρ+ λ)(t1 − t))

4
.

This is a decreasing function as required. Moreover p(0) ≤ 1 If α > &φ − φ, or if α < &φ − φ

and t1 ≤ δA, as stipulated.

Payoffs. The strategic agent is indifferent about submitting a fake project at all times

t ∈ [0, t1], including time zero. Thus, the strategic agent’s payoff is u∗
A = 1− αp(0)− φ.

Given the agent’s mixed strategy F (·), the principal’s payoff is

VA =

% t1

0

exp(−(ρ+λ)t)(λ(1−σF (t))(1−θ)−σf(t)θ) dt+(1−σ)(1−θ)

% ∞

t1

λ exp(−(ρ+λ)t) dt.

To see this, note first that for an arrival during [0, t1], the principal is indifferent between

accepting and auditing, and thus her payoff is as if she accepts any such arrival. Fur-

thermore, the likelihood of a real arrival at time t ∈ [0, t1] given the agent’s mixed strat-

egy is exp(−λt)λ(1 − σF (t)), and the likelihood of a fraudulent arrival at such a time is

σ exp(−λt)f(t). Exploiting the principal’s indifference, accounting for discounting, and using

the principal’s payoffs from accepting a real and fake arrival, yields the previous expression.

Note that in the audit equilibrium,

(1− σF (t)) = exp(−µ1t) and σf(t) = µ1 exp(−µ1t).

Thus, we have

VA =

% t1

0

exp(−(ρ+ λ+ µ1)t)(λ(1− θ)− θµ1) dt+ (1− σ)(1− θ)

% ∞

t1

λ exp(−(ρ+ λ)t) dt

=

% t1

0

exp(−(ρ+
λ

θ1
)t)(λ(1− θ)− θλ

1− θ1
θ1

) dt+ (1− σ)(1− θ)

% ∞

t1

λ exp(−(ρ+ λ)t) dt

= λ(1− θ

θ1
)

% t1

0

exp(−(ρ+
λ

θ1
)t) dt+ (1− σ)(1− θ)

% ∞

t1

λ exp(−(ρ+ λ)t) dt.

50



Proposition A.2 (Two-stage auditing equilibrium.). A two stage auditing equilibrium exists

if and only if the test is weak and +t > 0, and it is characterized below. Furthermore, no other

two stage auditing equilibrium exists.

Strategies. The agent’s cheating time is drawn from continuous distribution function

F (t) =

!
#

$

1
σ
(1− exp(−µ0t)) for t ∈ [0,+tA)

1
σ
(1− exp(−µ1t− (µ0 − µ1)+tA)) for t ∈ [+tA, tA]

supported on [0, tA], where +tA = +t and tA = +t+δA. If t ∈ [0,+tA], then the principal randomizes

between rejecting and auditing, and the audit probability is

p(t) =
φ

&φ− α
+

'
1− φ

&φ− α

(
exp

6
−(

&φ− α

1− α
)(ρ+ λ)(+tA − t)

7
.

For t ∈ [+tA, tA) the principal randomizes between approval and auditing, and the audit prob-

ability is

p(t) =
&φ− φ

α
(1− exp(−(ρ+ λ)(tA − t)).

For t ≥ tA the principal approves all submissions without performing an audit.

Beliefs. If t ∈ (0,+tA), then g(t) = θ0. If t ∈ (+tA, tA), then g(t) = θ1. Otherwise g(t) = 1.

Payoffs. The agent’s equilibrium payoff is US
A = (1− α)p(0)− φ. The principal’s payoff is

VA = exp(−(µ0−µ1)+tA)
% tA

"tA
exp(−(ρ+

λ

θ1
)t)

λ

θ1
(θ1−θ)dt+(1−θ)(1−σ)

% ∞

tA

λ exp(−(ρ+λ)t)dt.

Proof of Proposition A.2. Consider an equilibrium in which the principal first randomizes

between performing the test and default rejection and switches at time +tA to randomizing

between performing the test and default approval, as in Lemma 7.3 with +tA > 0. Expressions

(A.3) and (A.4) remain valid for the default approval stage. So it remains to derive the agent

and principal mixing functions during the default rejection stage. We will then paste the

two stages together by ensuring continuity of the agent’s CDF at the transition times, +tA
and tA, combined with the boundary conditions, p(+tA) = 1 and p(tA) = 0, established in

Lemma 7.3.

Strategies and Phase Transitions. For the principal to be indifferent between auditing and

rejecting we must have g(t) = θ0 for all t ∈ [0,+tA). The agent therefore mixes with constant

arrival rate µ0. Furthermore, since the equilibrium begins with this phase, we cannot have

a mass point at zero. It follows that for t ∈ [0,+tA),

F (t) =
1

σ
(1− exp(−µ0t)).
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To find the audit probability during the default rejection stage, note that a real submission

is approved iff it is tested, and hence, for t ∈ [0,+tA),

uA(t) =

% t

0

λ exp(−(ρ+ λ)s)p(s) ds+ exp(−(ρ+ λ)t)((1− α)p(t)− φ).

The agent’s indifference requires u′
A(t) = 0, or

λp(t)− (ρ+ λ)((1− α)p(t)− φ) + (1− α)p′(t) = 0.

Dividing by 1− α and combining terms renders this as

−(ρ+ λ)(&φ− α)

1− α
p(t) + p′(t) = −(ρ+ λ)φ

1− α
.

Solving yields

p(t) =
φ

&φ− α
+ κ2 exp(

(ρ+ λ)(&φ− α)

1− α
t).

To construct the equilibrium we must paste the two phases together ensuring continuity of

the CDF, and the boundary conditions p(tA) = 0 and p(+tA) = 1. We have the following five

equations in the five unknowns κ1, κ2, κ3, +t and tA:

F (tA) = 1

=⇒ 1

σ
(1− κ1 exp(−µ1tA)) = 1, (A.5)

continuity of F (·) at +tA

=⇒ 1

σ
(1− exp(−µ0

+tA)) =
1

σ
(1− κ1 exp(−µ1

+tA)), (A.6)

p(+t−A) = 1

=⇒ φ

&φ− α
+ κ2 exp(

(ρ+ λ)(&φ− α)

1− α
+tA) = 1, (A.7)

p(+t+A) = 1

=⇒
&φ− φ

α
+ κ3 exp((ρ+ λ)+tA) = 1, (A.8)

p(tA) = 0

=⇒
&φ− φ

α
+ κ3 exp((ρ+ λ)tA) = 0. (A.9)
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We will work with these equations sequentially, starting from the last one and working our

way up. In this way we will reduce the system to one with just two linear equations and

unknowns. From (A.9) we get

κ3 = −
&φ− φ

α
exp(−(ρ+ λ)tA).

Substituting this into (A.8) gives

&φ− φ

α

3
1− exp(−(ρ+ λ)(tA − +tA))

4
= 1

=⇒ exp(−(ρ+ λ)(tA − +tA)) = 1− α

&φ− φ

An immediate implication is tA > +tA ⇐⇒ α < &φ− φ. Because tA > +tA is necessary for the

equilibrium, we maintain the assumption that α < &φ− φ. Taking the natural log, we get

tA − +tA = −
ln
)
1− α

!φ−φ

*

ρ+ λ
= δA. (A.10)

We will return to this equation later. From (A.7) we get

κ2 =

'
1− φ

&φ− α

(
exp

6
−(ρ+ λ)(&φ− α)

1− α
+tA

7
.

Observe that α < &φ− φ implies κ2 > 0. From (A.6) we get

κ1 = exp(−(µ0 − µ1)+tA).

Note that κ1 > 0. Furthermore, µ0 > µ1 implies κ1 < 1 whenever +tA > 0. Substituting κ1

into (A.5), rearranging, and taking logs gives

(µ0 − µ1)+tA + µ1tA = − ln(1− σ). (A.11)

Solving (A.10) and (A.11) for +tA and tA yields the desired expressions.

We show that +tA > 0 ⇐⇒ t1 > δA.

+tA > 0 ⇐⇒ t0 −
µ1

µ0

δA > 0 ⇐⇒ µ1

µ0

(t1 − δA) > 0 ⇐⇒ t1 > δA,

and thus the preceding is necessary and sufficient for the existence of the two stage auditing

equilibrium.

We show that +tA > 0 ⇒ tA < t1. Note that

+tA > 0 ⇒ t0 >
µ1

µ0

δA ⇒ t1 > δA ⇒ t1(1−
µ1

µ0

) > (1− µ1

µ0

)δA ⇒

− ln(1− σ)
µ0 − µ1

µ1µ0

> (1− µ1

µ0

)δA ⇒ − ln(1− σ)(
1

µ1

− 1

µ0

) > (1− µ1

µ0

)δA ⇒

t1 − t0 > (1− µ1

µ0

)δA ⇒ t1 > t0 + (1− µ1

µ0

)δA = tA.
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Payoffs. The strategic agent is indifferent about submitting a fake project at all times

t ∈ [0, tA], including time zero. Thus, the strategic agent’s payoff is u∗
A = (1− α)p(0)− φ.

Following similar logic to Proposition A.1, given the agent’s mixed strategy F (·), the prin-

cipal’s payoff is

VA =

% tA

"tA
exp(−(ρ+λ)t)(λ(1−σF (t))(1−θ)−σf(t)θ) dt+(1−σ)(1−θ)

% ∞

"tA
λ exp(−(ρ+λ)t) dt.

Note that in the two stage equilibrium, the principal is indifferent between auditing and

rejecting for arrivals at t ∈ [0,+tA). In the two stage audit equilibrium, for t ∈ [+tA, tA),

(1−σF (t)) = exp(−(µ0−µ1)+tA) exp(−µ1t) and σf(t) = exp(−(µ0−µ1)+tA)µ1 exp(−µ1t),

which implies that the principal’s payoff is

exp(−(µ0 − µ1)+tA)
% tA

"tA
exp(−(ρ+ λ+ µ1)t)(λ(1− θ)− θµ1) dt+ (1− θ)(1− σ)

% ∞

tA

λ exp(−(ρ+ λ)t) dt.

Substituting µ1 inside the integrand and simplifying yields

VA = exp(−(µ0 − µ1)+tA)(1−
θ

θ1
)

% tA

"tA
exp(−(ρ+

λ

θ1
)t) dt+ (1− σ)(1− θ)

% ∞

tA

λ exp(−(ρ+ λ)t) dt

Proof of Proposition 7.1. We use the characterization of all possible equilibria with the one-

stage structure (Proposition A.1) and all equilibria with the two-stage structure (Proposition

A.2) throughout the proof.

Proof of (i). From Proposition A.1, the one-stage equilibrium exists if either (a) the test is

strong or (b) the test is weak and +t = 0. From Proposition A.2, the two-stage equilibrium

exists if the test is weak and +t > 0. Given our focus on tests that are either strong or weak,

these conditions are mutually exclusive and exhaustive. Thus, for all parameters under

consideration an equilibrium exists and is unique.

Step 1. We show that the condition +t > 0 ⇐⇒ σ > σ∗, characterizing σ∗ exactly. Note

that

+t > 0 ⇐⇒ t1 > δA ⇔ − ln(1− σ) > µ1δA ⇐⇒ σ > σ∗ ≡ 1− exp(−µ1δA).

Proof of (ii). From Proposition A.1, the one-stage equilibrium exists if and only if either (a)

the test is strong or (b) the test is weak and +t = 0. Using Step 1, the result follows.

Proof of (iii). To prove the first part of (iii), from Proposition A.2, the two-stage equilibrium

exists if and only if the test is weak and +t > 0. Using Step 1, the result follows. To prove
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the second part of (iii), note that the principal’s belief that the agent is ethical, given no

submission at time or before time t is

exp(−λt)(1− σ)

exp(−λt)(1− σF (t))
=

1− σ

1− σF (t)
.

Indeed, the denominator is the probability of no submission at or before t, while the numera-

tor is the probability of no submission at or before t and an ethical agent. From Proposition

A.2 and continuity F (·) (Lemma 7.3) at the transition time +tA = +t, we have

F (+tA) =
1

σ
(1− exp(−µ0

+t)) ⇒ 1− σF (+tA) = exp(−µ0
+t).

By assumption, +t > 0. Substituting, we have

exp(−µ0
+t) = exp(−µ1(t1 − δA)) = exp(µ1δA) exp(−µ1t1) = exp(µ1δA)(1− σ).

By implication, the belief that the agent is ethical at +t is exp(−µ1δA) = 1 − σ∗. The claim

follows.

Proof of Proposition 7.2. We consider the principal’s, ethical agent’s, and strategic agent’s

payoffs in the one-stage and two-stage auditing equilibrium.

Principal, one-stage equilibrium. From Proposition A.1, we have that the principal’s

payoff in the one stage auditing equilibrium is

VA = λ(1− θ

θ1
)

% t1

0

exp(−(ρ+
λ

θ1
)t) dt+ (1− σ)(1− θ)

% ∞

t1

λ exp(−(ρ+ λ)t) dt.

We seek to show that this is larger than the payoff in the main model, V , given in Proposition

4.1. Note first that for θ1 = θ, the two expressions are equal, i.e. VA = V . Note further that

the one stage auditing equilibrium exists only if k < k∗ ⇐⇒ θ1 > θ. Differentiating with

respect to θ1, we have

dVA

dθ1
=

λθ

θ21

% t1

0

exp(−(ρ+
λ

θ1
)t) dt

+ λ(1− θ

θ1
)[exp(−(ρ+

λ

θ1
)t1)

dt1
dθ1

+

% t1

0

exp(−(ρ+
λ

θ1
)t)

λ

θ21
tdt]− (1− σ)(1− θ)λ exp(−(ρ+ λ)t1)

dt1
dθ1

.

Note that xxx

(1− σ) exp(−(ρ+ λ)t1) = exp((1 + (ρ+ λ)
θ1

λ(1− θ1)
) ln(1− σ))

= exp(−(ρ+
λ

θ1
)(− θ1

λ(1− θ1)
) ln(1− σ)) = exp(−(ρ+

λ

θ1
)t1),
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and
dt1
dθ1

= −λ(1− θ1) + λθ1
λ2(1− θ1)2

ln(1− σ) = − 1

λ(1− θ1)2
ln(1− σ) =

t1
θ1(1− θ1)

.

Substituting and simplifying, we have

dVA

dθ1
=

λθ

θ21

% t1

0

exp(−(ρ+
λ

θ1
)t) dt− λθ

θ21
exp(−(ρ+

λ

θ1
)t)t+ λ(

θ1 − θ

θ1
)

% t1

0

exp(−(ρ+
λ

θ1
)t)

λ

θ21
tdt.

Noting that the last integral is strictly positive, we have

dVA

dθ1
>

λθ

θ21
[

% t1

0

exp(−(ρ+
λ

θ1
)t) dt− exp(−(ρ+

λ

θ1
)t)t] > 0,

where the last inequality follows because exp(−(ρ+λ/θ1)t) is a decreasing function, and thus,

its average value on interval [0, t1] is larger than its value at the right endpoint. Because (i)

VA is increasing in θ1, (ii) θ1 > θ whenever the one-stage auditing equilibrium exists, and

(iii) θ1 = θ ⇒ VA = V , we have that in the one-stage auditing equilibrium VA > V .

Principal, two-stage equilibrium. We prove that the principal’s payoff is higher in the

two stage auditing equilibrium than in the baseline model in three steps.

In Step 1 we show that the principal’s payoff in the two-stage equilibrium approaches her

payoff in the one-stage equilibrium as σ → σ∗+. Because we showed above that the principal’s

payoff is strictly higher in the one stage auditing equilibrium than in the baseline model, we

conclude that there exists ε > 0 such that her payoff in the two stage auditing equilibrium

is also higher than in the baseline model for all σ ∈ (σ∗, σ∗ + ε).

In Step 2 we show that if the principal’s payoff is higher in the two-stage auditing equilibrium

than in the baseline model for some value of σ, then it is higher for all larger values as well.

In Step 3, we combine Steps 1 and 2 to show that the principal’s payoff is higher in the two

stage auditing equilibrium than in the baseline model.

Step 1: We show that for any σ such that the two-stage auditing equilibrium exists, there

exists σ′ < σ such that (i) the two-stage auditing equilibrium exists at σ′, and (ii) at σ′

the principal’s payoff in the two-stage auditing equilibrium is higher than her payoff in the

baseline model.

Consider parameters at which the two-stage auditing equilibrium exists; by Proposition A.2,

we have α < &φ − φ and σ > σ∗. By implication, if σ > σ∗, then the two stage auditing

equilibrium exists for all σ ∈ (+σ, σ).

Next, we argue that as σ → σ∗+, the principal’s payoff in the two-stage auditing equilibrium

approaches her payoff in the one-stage auditing equilibrium. Note that in the two-stage

equilibrium, the principal’s payoff is

VA = exp(−(µ0−µ1)+tA)(1−
θ

θ1
)

% tA

"tA
λ exp(−(ρ+

λ

θ1
)t)dt+(1−θ)(1−σ)

% ∞

tA

λ exp(−(ρ+λ)t)dt.
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As σ → σ∗+, we have t1 → δA. By implication,

σ → σ∗+ ⇒ +tA = t0 −
µ1

µ0

δA =
µ1

µ0

(t1 − δA) → 0.

By routine simplification, as σ → σ∗+, the principal’s payoff in the two-stage equilibrium

approaches

(1− θ

θ1
)

% δA

0

λ exp(−(ρ+
λ

θ1
)t)dt+ (1− θ)(1− σ)

% ∞

δA

λ exp(−(ρ+ λ)t)dt,

which is the principal’s payoff in the one-stage equilibrium that obtains at σ∗. From the

previous part, this payoff strictly exceeds the principal’s payoff in the baseline model. By

implication, there exists ε > 0 such that for an σ′ ∈ (σ∗, σ∗ + ε), the principal’s payoff in the

two-stage equilibrium at σ′ strictly exceeds her payoff in the baseline model. Hence, for any

σ > σ∗, there exists σ′ ∈ (σ∗, σ) at which the principal’s payoff in the two stage equilibrium

is higher than her payoff in the baseline model.

Step 2: Consider σ > σ∗. We show that if the principal’s payoff is higher in the two stage

equilibrium with auditing than in the baseline model at σ, then the same is true for all

σ′′ > σ.

Consider the payoff difference between the auditing equilibrium and the baseline model,

exp(−(µ0 − µ1)+tA)(1−
θ

θ1
)

% tA

"tA
exp(−(ρ+

λ

θ1
)t) dt

+ (1− θ)(1− σ)

8% ∞

tA

λ exp(−(ρ+ λ)t) dt−
% ∞

t

λ exp(−(ρ+ λ)t) dt

9
.

We simplify the previous expression in order to isolate σ. To keep the exposition organized,

we proceed line-by-line.

We simplify the first line.

exp(−(µ0 − µ1)+tA)(1−
θ

θ1
)(

θ1
θ1ρ+ λ

)[exp(−(ρ+
λ

θ1
)+tA)− exp(−(ρ+

λ

θ1
)tA)].

Note that

−(µ0 − µ1) = −λ
θ1(1− θ0)− θ0(1− θ1)

θ1θ0
= λ

θ1 − θ0
θ1θ0

=
λ

θ1
− λ

θ0
.

Substituting, and using tA = +tA + δA, we have

(
θ1

θ1ρ+ λ
) exp(−(ρ+

λ

θ0
)+tA)(1−

θ

θ1
)[1− exp(−(ρ+

λ

θ1
)δA)].
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Using +tA = t0 − µ1

µ0
δA, we have

(
θ1

θ1ρ+ λ
) exp(−(ρ+

λ

θ0
)t0) exp((ρ+

λ

θ0
)
µ1

µ0

δA)(1−
θ

θ1
)[1− exp(−(ρ+

λ

θ1
)δA)].

Substituting the definition of t0, the first line is

(
θ1

θ1ρ+ λ
)(1− σ)

(ρ+ λ
θ0

)
θ0

λ(1−θ0) exp((ρ+
λ

θ0
)
µ1

µ0

δA)(1−
θ

θ1
)[1− exp(−(ρ+

λ

θ1
)δA)] =

(
θ1

θ1ρ+ λ
)(1− σ)

ρθ0+λ
λ(1−θ0) exp((ρ+

λ

θ0
)
µ1

µ0

δA)(1−
θ

θ1
)[1− exp(−(ρ+

λ

θ1
)δA)] =

κ1(1− σ)
ρθ0+λ
λ(1−θ0) ,

where κ1 ≡ ( θ1
θ1ρ+λ

) exp((ρ+ λ
θ0
)µ1

µ0
δA)(1− θ

θ1
)[1− exp(−(ρ+ λ

θ1
)δA)] is independent of σ.

Next, we simplify the second line.

(1− θ)(1− σ)[

% ∞

tA

λ exp(−(ρ+ λ)t) dt−
% ∞

t

λ exp(−(ρ+ λ)t) dt] =

(1− θ)(1− σ)

% t

tA

λ exp(−(ρ+ λ)t) dt = (1− θ)(1− σ)
λ

λ+ ρ
[exp(−(ρ+ λ)tA)− exp(−(ρ+ λ)t)].

Substituting tA = t0 + (1− µ1

µ0
)δA, we have

(1− θ)(1− σ)
λ

λ+ ρ
[exp(−(ρ+ λ)(1− µ1

µ0

)δA) exp(−(ρ+ λ)t0)− exp(−(ρ+ λ)t)].

Note that

(1− σ) exp(−(ρ+ λ)t0) = exp((1− (ρ+ λ)
θ0

λ(1− θ0)
) ln(1− σ)) =

exp(−(ρ+
λ

θ0
)(− θ0

λ(1− θ0)
) ln(1− σ)) = exp(−(ρ+

λ

θ0
)t0),

and similarly, (1− σ) exp(−(ρ+ λ)t) = exp(−(ρ+ λ
θ
)t). Continuing the simplification,

(1− θ)
λ

λ+ ρ
[exp(−(ρ+ λ)(1− µ1

µ0

)δA) exp(−(ρ+
λ

θ0
)t0)− exp(−(ρ+

λ

θ
)t)] =

(1− θ)
λ

λ+ ρ
[exp(−(ρ+ λ)(1− µ1

µ0

)δA)(1− σ)
ρθ0+λ
λ(1−θ0) − (1− σ)

ρθ+λ
λ(1−θ) ] =

κ2(1− σ)
ρθ0+λ
λ(1−θ0) − κ3(1− σ)

ρθ+λ
λ(1−θ) ,

where κ2 ≡ (1 − θ) λ
λ+ρ

exp(−(ρ + λ)(1 − µ1

µ0
)δA) and κ3 ≡ (1 − θ) λ

λ+ρ
are independent of σ.

Combining terms, the payoff difference as a function of σ is simply

(κ1 + κ2)(1− σ)
ρθ0+λ
λ(1−θ0) − κ3(1− σ)

ρθ+λ
λ(1−θ) .
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Therefore,

(κ1 + κ2)(1− σ)
ρθ0+λ
λ(1−θ0) − κ3(1− σ)

ρθ+λ
λ(1−θ) > 0 ⇐⇒

(κ1 + κ2)− κ3(1− σ)
ρθ+λ
λ(1−θ)

− ρθ0+λ
λ(1−θ0) > 0 ⇐⇒

κ1 + κ2

κ3

> (1− σ)
(λ+ρ)(θ−θ0)
λ(1−θ)(1−θ0) .

Because θ0 < θ for k ∈ (0, k∗), the right hand side is a decreasing function of σ, while the

left hand side does not depend on σ. Thus, if the payoff difference is positive for some value

of σ > σ∗, then it is also positive for σ′′ ∈ (σ, 1].

Step 3. We show that the principal’s payoff is higher in the two stage auditing equilibrium

than in the baseline model. Consider σ > σ∗. From Step 1, there exists σ′ ∈ (+σ, σ) such

that the principal’s payoff in the two stage auditing equilibrium at σ′ is higher than in the

baseline model. Applying Step 2, the principal’s payoff in the two stage auditing equilibrium

at σ > σ′ is also higher than in the baseline model.

Ethical Agent, one-stage equilibrium. The ethical agent never submits a fake project

and all real projects are approved in the one-stage equilibrium. Therefore he receives his

first-best payoff % ∞

0

λ exp(−(ρ+ λ)t) dt =
λ

ρ+ λ
.

Because the baseline model has a positive probability of project rejection, the payoff in the

baseline model is strictly smaller.

Ethical Agent, two-stage equilibrium. We claim that the ethical agent’s payoff is higher

in the two stage auditing equilibrium than in the baseline model,

% "tA

0

λ exp(−(ρ+ λ)t)p(t) dt+

% ∞

"tA
λ exp(−(ρ+ λ)t)dt >

% t

0

λ exp(−(ρ+ λ)t)a(t) dt+

% ∞

t

λ exp(−(ρ+ λ)t)dt ⇐⇒
% "tA

0

λ exp(−(ρ+ λ)t)[p(t)− a(t)] dt+

% t

"tA
λ exp(−(ρ+ λ)t)dt > 0.

We establish this by showing (i) +tA < t and (ii) p(t) > a(t) for all t ≤ +tA. First note that

+tA < t ⇐⇒ t0 −
µ1

µ0

δA < t ⇐⇒ −µ1

µ0

δA < − ln(1− σ)

'
1

µ
− 1

µ0

(
.

The left side of the last line is evidently negative and the right side is positive because

k < k∗ ⇒ µ < µ0, which establishes (i). To establish (ii), consider the following string of
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implications for t ≤ +tA:

1 > exp(−ρ(t− t)) and α > 0 ⇒
φ

&φ− α
− φ

&φ
>

'
φ

&φ− α
− φ

&φ

(
exp(−ρ(t− t) ⇒

φ

&φ− α
− φ

&φ
+ exp(−ρ(t− t)) >

'
φ

&φ− α
− φ

&φ

(
exp(−ρ(t− t) + exp(−ρ(t− t)) ⇒

φ

&φ− α
+

'
1− φ

&φ− α

(
exp(−ρ(t− t)) >

φ

&φ
+

'
1− φ

&φ

(
exp(−ρ(t− t)).

Now, because +tA < t and
!φ−α

!φ(1−α)
< 1, we have

exp

6
− (&φ− α)

&φ(1− α)
ρ(+tA − t)

7
> exp(−ρ(t− t)),

and hence,

exp

6
−
&φ− α

1− α
(ρ+ λ)(+tA − t)

7
> exp(−ρ(t− t)).

Combining this with the last line above gives

φ

&φ− α
+

'
1− φ

&φ− α

(
exp

6
−
&φ− α

1− α
(ρ+ λ)(+tA − t)

7
>

φ

&φ
+

'
1− φ

&φ

(
exp(−ρ(t− t)),

or p(t) > a(t) as desired.

Strategic Agent, one-stage equilibrium. The one-stage equilibrium exists when α > &φ−
φ, for all σ ∈ [0, 1]. In the one-stage equilibrium, the strategic agent’s payoff is 1−αp(0)−φ.

As σ → 1 both tA and t diverge so that

lim
σ→1

1− αp(0) = 1− (&φ− φ),

and

lim
σ→1

a(0) =
φ

&φ
.

Note that

1− (&φ− φ) >
φ

&φ
⇐⇒ (&φ− φ)(1− &φ) > 0 ⇐⇒ φ < &φ < 1.

Strategic Agent, two-stage equilibrium. Note that for α < &φ − φ and σ > +σ, the
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auditing equilibrium is in two phases. Since we assume that σ is large, the strategic agent’s

payoff is (1− α)p(0)− φ. As σ → 1 both +tA and tA diverge so that

lim
σ→1

(1− α)p(0) =
(1− α)φ

&φ− α
,

and

lim
σ→1

a(0) =
φ

&φ
.

Thus, the two stage auditing equilibrium payoff is higher whenever

(1− α)φ

&φ− α
>

φ

&φ
⇐⇒ (1− α)φ&φ− φ&φ+ φα > 0 ⇐⇒ φα(1− &φ) > 0,

and, thus, &φ < 1 implies that the first limit is larger than the second.

B Online Appendix: Analysis of Commitment

Here we prove Proposition 5.1 by formally analyzing the setting in which the principal

can commit to her acceptance strategy a(·). As noted in the text, we adopt the standard

approach of the principal-agent literature sans transfers, assuming that the principal selects

her strategy a(·), and recommends a strategy to the agent. The agent complies with the

principal’s recommendation, provided that doing so is incentive compatible. In what follows,

we refer to a(·) and a recommendation as the “design.” For the problem to be interesting,

we must have φ < &φ, which we assume throughout.

Suppose first that at the solution of the principal’s design problem, multiple times are in-

centive compatible for the agent to select. That is, at the optimum more than one time t

satisfies u(t) ≥ u(t′) for all possible times t′. In this case, the principal recommends her

most preferred cheating time among those that are incentive compatible, recommending a

mixture only if she is indifferent between them. Thus, it is without loss of generality to focus

on an equilibrium in which the principal recommends a single cheating time to the agent,

denoted τ .

So the principal’s objective function is

(1− θ)

% τ

0

λ exp{−(λ+ ρ)t}a(t)dt+ (1− θ)(1− σ)

% ∞

τ

λ exp{−(λ+ ρ)t}a(t)dt

−θσ exp{−(λ+ ρ)τ}a(τ).

The first term captures the expected benefit of accepting a real arrival generated from either

type of agent before the recommended cheating time, the second represents the benefit of
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accepting a real arrival generated after the recommended cheating time, which only is realized

if the agent is ethical, and the third term is the cost of accepting a fraudulent submission at

the recommended cheating time. The principal faces an incentive constraint which requires

that the agent’s payoff of using the recommended cheating time be at least as large as his

payoff of using some other cheating time, u(τ) ≥ u(t) for all t, where

u(t) =

% t

0

λ exp(−(ρ+ λ)s)a(s)dt+ exp(−(ρ+ λ)t)(a(t)− φ).

The principal also faces a feasibility constraint, a(t) ≤ 1.

Approach. We separately consider the case τ = ∞ and τ < ∞. In the case of τ = ∞, we

show that the optimal acceptance strategy that is consistent with such a recommendation is

stationary a(t) = φ/&φ.

We then consider the case τ < ∞. We first show that we only need to focus on accep-

tance strategies for which a(τ) > φ/&φ. Next, we solve for the optimal acceptance strategy,

restricting (τ, a(τ)) to specific values. Finally, we jointly determine (τ, a(τ)).

Some of our arguments (in both parts) use the result of a simpler optimization problem,

which we refer to as the auxiliary problem. In this problem, we fix a time domain [0, T ], a

“target time” τA ∈ [0, T ], and an acceptance probability at the target time, a(τA) = α. The

principal’s goal is to choose a function a(·) to optimize her payoff on time domain [0, T ],

subject to IC and a(τA) = α. Relative to the original problem, the time domain is restricted

to interval [0, T ] and we do not require a(t) ≤ 1. We show that the optimal acceptance

strategy is such that IC binds on [0, T ] and provide a characterization of a(·). We reference

the optimal acceptance strategy in the auxiliary problem several times in the subsequent

analysis.

B.1 Auxiliary Problem

Consider an auxiliary optimization problem that is related to the principal’s original problem.

There is an exogenous time horizon T < ∞, an exogenous faking time τA ∈ [0, T ], and an

exogenous value α. In the auxiliary problem, the principal’s goal is to choose a function

a(·) to maximize her objective function in the original problem confined to [0, T ], subject to

IC and a(τA) = α. Relative to the original problem, feasibility is relaxed, we consider only

times [0, T ], and both τA and a(τA) are given. Thus, the auxiliary problem is
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max
a(·)

(1− θ)

% τA

0

λ exp{−(λ+ ρ)t}a(t)dt+ (1− θ)(1− σ)

% T

τA

λ exp{−(λ+ ρ)t}a(t)dt

−θσ exp{−(λ+ ρ)τA}a(τA),

subject to (IC), a(τA) = α. Note that, since (τA, a(τA) = α) are exogenous, we can ignore

the third term in the objective.

Integral Representation. Given that a(·) is absolutely continuous, so is u(·). It follows
that

u′(t) = exp{−(ρ+ λ)t}(a′(t)− ρa(t) + φ(ρ+ λ)).

We have

u′(t) exp{(ρ+ λ)t}− φ(ρ+ λ) = a′(t)− ρa(t)

u′(t) exp{λt}− φ(ρ+ λ) exp(−ρt) = (a′(t)− ρa(t)) exp(−ρt)

u′(t) exp{λt}− φ(ρ+ λ) exp(−ρt) =
d

dt
[exp{−ρt}a(t)].

integrating from τA to t and using absolute continuity of a(·), we have

% t

τA

exp{λs}u′(s)ds+
φ

&φ
(exp{−ρt}− exp{−ρτA}) = a(t) exp{−ρt}− a(τA) exp{−ρτA} ⇒

a(t) =
φ

φ̂
+ (a(τA)−

φ

φ̂
) exp{−ρ(τA − t)}+ exp{ρt}[exp{λt}u(t)− exp{λτA}u(τA)−

% t

τA

λ exp{λs}u(s)ds].

Lemma B.1. In the solution of the auxiliary problem, incentive compatibility binds at all

times, i.e., u(t) = u(τA) for all t ∈ [0, T ].

Proof of Lemma B.1. Using the integral representation and ignoring the coefficient (1− θ),

the first term of the objective function (t < τA) can be written,
% τA

0

λ exp{−(λ+ ρ)t}[φ
φ̂
+ (a(τA)−

φ

φ̂
) exp{−ρ(τA − t)}]dt+

% τA

0

λu(t)− λ exp{−λ(t− τA)}u(τA)}dt+
% τA

0

% τA

t

λ2 exp{−λt} exp{λs}u(s)dsdt

The first line is exogenous, since (τA, a(τA) = α) are given. Consider the double integral,
% τA

0

% τA

t

λ2 exp{−λt} exp{λs}u(s)dsdt =
% τA

0

% s

0

λ2 exp{−λt} exp{λs}u(s)dtds =
% τA

0

λ[1− exp{−λs}] exp{λs}u(s)ds =
% τA

0

λ[exp{λs}− 1]u(s)ds
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Thus, the first term of the auxiliary objective function is

(1− θ)

% τA

0

λ exp{−(λ+ ρ)t}[φ
φ̂
+ (a(τA)−

φ

φ̂
) exp{−ρ(τA − t)}

+
)
λ exp(λt)u(t)− λ exp{−λ(t− τA)}u(τA)

*
dt.

Ignoring the coefficient (1− θ)(1− σ), the second term of the auxiliary objective (t > τA) is

% T

τA

λ exp{−(λ+ ρ)t}[φ
φ̂
+ (a(τA)−

φ

φ̂
) exp{−ρ(τA − t)}]dt+

% T

τA

λu(t)− λ exp{−λ(t− τA)}u(τA)dt−
% T

τA

% t

τA

λ2 exp{−λt} exp{λs}u(s)dsdt

Focusing on the double integral. We have

% T

τA

% t

τA

λ2 exp{−λt} exp{λs}u(s)dsdt =
% T

τA

% T

s

λ2 exp{−λt} exp{λs}u(s)dtdt =
% T

τA

λ[exp{−λs}− exp{−λT}] exp{λs}u(s)ds =
% T

τA

λ[1− exp{−λ(T − s)}]u(s)ds.

Therefore, up to the coefficient, the second term of the auxiliary objective function is

% T

τA

λ exp{−(λ+ ρ)t}[φ
φ̂
+ (a(τA)−

φ

φ̂
) exp(−ρ(τA − t))]+

% T

τA

λu(t)− λ exp{−λ(t− τA)}u(τA)− λ[1− exp{−λ(T − t)}]u(t)dt =
% T

τA

λ exp{−(λ+ ρ)t}[φ
φ̂
+ (a(τA)−

φ

φ̂
) exp(−ρ(τA − t))]+

)
λ exp{−λ(T − t)}u(t)− λ exp{−λ(t− τA)}u(τA)

*
dt

In both parts of the auxiliary objective (t < τA and t > τA), the integrand is strictly

increasing in u(t), and hence, in the solution of the auxiliary problem u(t) = u(τA).

Proposition B.1. In the optimal auxiliary design, u(t) = u(τA) for all t ∈ [0, T ], and

a(t) = aX(t) where

aX(t) ≡
φ

&φ
+ (α− φ

&φ
) exp{−ρ(τA − t)}

Proof of Proposition B.1. Follows immediately from u(t) = u(τA) on [0, T ] with boundary

condition at t = τA.
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B.2 Optimal Design

In this section we use the results on the auxiliary problem to solve the principal’s actual

problem. We proceed in three steps. 1) We analyze the best possible acceptance strategy

that incentivizes the agent to never cheat, i.e., τ = ∞. 2) We consider the best possible

design that induces cheating at some time τ < ∞ and has a specific value a(τ) = α. We

then show that the limit in this problem as τ → ∞ converges to the best payoff for τ = ∞,

and thus, the case of τ = ∞ can be analyzed as a limiting case of τ finite. 3) We jointly

optimize (τ,α).

Never faking. We first characterize the acceptance strategy that delivers the highest

possible payoff, assuming τ = ∞ is incentive compatible. In this case, incentive compatibility

requires that for any t, there exists t′ > t such that u(t′) ≥ u(t).

Lemma B.2. Consider all acceptance strategies for which τ = ∞ is incentive compatible.

Of these, the optimal one for the principal is a(t) = φ/&φ for all t ≥ 0.

Proof of Lemma B.2. Step 1. We argue that the proposed design is incentive compatible.

With a(t) = φ
!φ
, we have that u(t) = φλ/ρ. Thus, the agent’s payoff of faking is constant and

τ = ∞ is incentive compatible.

Next, We will show that, among all acceptance strategies for which τ = ∞ is IC, acceptance

strategy a(t) = φ/&φ is best. Suppose that one of the best acceptance strategies with this

property is denoted +a(·).

Step 2. We construct another acceptance strategy &a(·), based on acceptance strategy +a(·). In
particular, first select any time T . Consider the solution of the following auxiliary problem,

max
a(·)

% T

0

λ exp(−(ρ+ λ)t)a(t)dt

subject to (IC) and a(T ) = +a(T ). That is, T arbitrary, τA = T and α = +a(T ). From

our analysis of the auxiliary problem in Proposition B.1, we know that the solution of this

auxiliary problem is

aX(t) =
φ

&φ
+ (+a(T )− φ

&φ
) exp(−ρ(T − t)).

Using this function, we construct a new acceptance strategy, &a, whose performance we will

compare against the original strategy +a. In particular, consider

&a(t) =

!
#

$
aX(t) t < T

+a(t) t ≥ T.
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That is, to the left of T , the constructed acceptance strategy is the optimal acceptance

strategy from the auxiliary problem, chosen to match target value +a(T ). To the right of T

we use the original acceptance strategy. In addition, &a(·) is continuous at T by construction.

Step 3. We show that (i) &a(·) ∈ [0, 1] and (ii) if the principal uses +a(·), then τ = ∞ is

incentive compatible. Note first that for t > T , we have &a(t) = +a(t) ∈ [0, 1]. Next, note that

for t ≤ T , we have &a(t) ∈ [φ/&φ,+a(T )], and therefore &a(t) ∈ (0, 1].

Next, we show that when the principal commits to &a(·), τ = ∞ is incentive compatible. In

particular, we show that for any t, there exists t′ > t such that &u(t′) ≥ &u(t), where &u(t) is
the agent’s payoff of selecting faking time t with acceptance strategy &a(·).

First consider t′ > t ≥ T . Note that for all t′ > t ≥ T , the alternative design is identical to

the original, and hence,

&u(t′)− &u(t) =
% t′

t

λ exp(−(ρ+ λ)s)+a(s)ds+ exp(−(ρ+ λ)t′)(+a(t′)− φ)− exp(−(ρ+ λ)t)(+a(t)− φ) =

u(t′)− u(t).

It follows that if u(t′) > u(t) in the original design, then it is also larger in the modified

design. Because τ = ∞ is IC in the original design, for any t, some t′ > t can be found such

that u(t′) > u(t). Hence, &u(t′) > &u(t) in the modified design as well.

Next, consider t < T . It is elementary to show by direct verification that for all t ∈ [0, T ], we

have &u(t) = &u(T ) (equivalently, recall that in the auxiliary problem, IC binds in the entire

interval). Furthermore, from our previous argument, we have that there exists a t′ > T such

that &u(t′) > &u(T ), and hence &u(t′) > &u(T ) = &u(t).

Step 4. We show that the principal’s payoff of the alternative acceptance strategy &a(·) must

be the same as the payoff of the optimal strategy +a(·), i.e.
% ∞

0

λ exp(−(ρ+ λ)t)&a(t)dt =
% ∞

0

λ exp(−(ρ+ λ)t)+a(t)dt.

Because +a(·) is optimal, it is enough to show that
% ∞

0

λ exp(−(ρ+ λ)t)&a(t)dt ≥
% ∞

0

λ exp(−(ρ+ λ)t)+a(t)dt.

First, recall that aX(·) solves the auxiliary problem, and hence

% T

0

λ exp(−(ρ+ λ)t)aX(t)dt ≥
% T

0

λ exp(−(ρ+ λ)t)+a(t)dt ⇒
% T

0

λ exp(−(ρ+ λ)t)aX(t)dt+

% ∞

T

λ exp(−(ρ+ λ)t)+a(t)dt ≥
% ∞

0

λ exp(−(ρ+ λ)t)+a(t)dt.
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Note that by construction, the left hand side is the principal’s payoff of using &a(·), so that
% ∞

0

λ exp(−(ρ+ λ)t)&a(t)dt ≥
% ∞

0

λ exp(−(ρ+ λ)t)+a(t)dt,

as we sought to show.

Step 5. We show that +a(t) = φ
!φ
. From Step 4, that alternative acceptance strategy &a(·)

achieves the same value as +a(·), and this is true for all T > 0 at which the alternative design

is constructed. Hence,
% ∞

0

λ exp(−(ρ+ λ)t)&a(t)dt =
% T

0

λ exp(−(ρ+ λ)t)aX(t)dt+

% ∞

T

λ exp(−(ρ+ λ)t)+a(t)dt

does not depend on T . By implication, its derivative with respect to T is 0, i.e.
% T

0

λ exp(−(ρ+ λ)t)
daX(t)

dT
dt = 0.

It therefore follows that for all t,

daX(t)

dT
= 0 ⇒ −ρ(+a(T )− φ

&φ
) exp(−ρ(T − t)) + +a′(T ) exp(−ρ(T − t)) = 0 ⇒ +a(T )− φ

&φ
= κ exp(ρT ),

for some constant κ. Note that if κ ∕= 0, then for sufficiently large T , +a(T ) will either exceed
1, or become negative. Hence, it must be that κ = 0. By implication +a(T ) = φ/&φ. Since T

is chosen arbitrarily, we have the result.

Finite Cheating. Now we consider acceptance strategies that recommend incentive com-

patible cheating at some finite time τ < ∞. We will eventually consider acceptance strategies

such that cheating at τ is IC and have a fixed value a(τ). Before we do that, however, we

establish a bound on a(τ) that applies to the optimal design, i.e., the combination of faking

time and acceptance strategy that are optimal in the principal’s original problem (Lemmas

B.3, B.4, B.5). In Lemma B.5 we consider acceptance strategies such that the recommended

IC faking time is τ , and a(τ) = α, where α is consistent with the bound we established. We

then optimize over (τ,α).

Lemma B.3. If τ < ∞ in the optimal design, then u(τ) > φλ
ρ
.

Proof. Step 1. We show that in the optimal design, the principal’s payoff must be weakly

larger than (1− θ)φλ/ρ. Consider a particular acceptance strategy for the principal, a(t) =

φ/&φ = φ(1 + λ
ρ
). Obviously, a(t) ∈ (0, 1). Next, we show that for all t ≥ 0, in this design

u(t) = φλ
ρ
, and thus any τ ≥ 0 is an incentive compatible recommendation. We have

u(t) =
λ

λ+ ρ
(1− exp{−(λ+ ρ)t})φ(1 + λ

ρ
) + exp{−(λ+ ρ)t}φλ

ρ
=

φλ

ρ
.
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Finally, we show that by recommending τ = ∞ and a(τ) = φ(1 + λ
ρ
), the principal can

achieve a payoff (1 − θ)φλ/ρ. To see this, note that the principal’s payoff for the proposed

acceptance strategy as τ → ∞ is

(1− θ)

% ∞

0

λ exp{−(λ+ ρ)t}φ(1 + λ

ρ
)dt = (1− θ)

φλ

ρ
.

Thus, an incentive compatible design allows the principal to achieve payoff (1− θ)φλ/ρ, and

therefore her payoff in the optimal design must be weakly larger.

Step 2. We show that if the optimal design for the principal has τ < ∞, then it cannot be

the case that both a(τ) = 0 and

% ∞

τ

exp{−(λ+ ρ)t}a(t)dt = 0.

That is, if τ < ∞, then at least one of these is strictly positive. Suppose both are zero. For

t > τ we have

u(t)− u(τ) =
% t

τ

λ exp(−(ρ+ λ)s)a(s)dt+ exp(−(ρ+ λ)t)(a(t)− φ)− exp(−(ρ+ λ)τ)(a(τ)− φ) =

exp(−(ρ+ λ)t)(−φ)− exp(−(ρ+ λ)τ)(−φ) = φ(exp(−(ρ+ λ)τ)− exp(−(ρ+ λ)t)) > 0,

contradicting incentive compatibility.

Step 3. We show that if the optimal design has τ < ∞, then u(τ) > φλ/ρ. From Step 1, we

know that in the optimal design, the principal’s payoff must exceed (1− θ)φλ/ρ,

(1− θ)

% τ

0

λ exp{−(λ+ ρ)t}a(t)dt+ (1− θ)(1− σ)

% ∞

τ

λ exp{−(λ+ ρ)t}a(t)dt

−θσ exp{−(λ+ ρ)τ}a(τ) ≥ (1− θ)
φλ

ρ
.

Next, from Step 2 we have the following inequality,

θσ exp{−(ρ+ λ)τ}a(τ) + (1− θ)σ

% ∞

τ

lambdaexp{−(ρ+ λ)t}a(t)dt > 0.

Adding this quantity to the left hand side yields,

(1− θ)

% τ

0

λ exp{−(λ+ ρ)t}a(t)dt+ [(1− θ)(1− σ) + θσ]

% ∞

τ

λ exp{−(λ+ ρ)t}a(t)dt > (1− θ)
φλ

ρ
⇒

(1− θ)

% ∞

0

λ exp{−(λ+ ρ)t}a(t)dt > (1− θ)
φλ

ρ% ∞

0

λ exp{−(λ+ ρ)t}a(t)dt > φλ

ρ
.
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Next, note that u(t) ≤ u(τ), and hence,

lim
t→∞

u(t) ≤ u(τ) ⇒
% ∞

0

λ exp{−(λ+ ρ)t}a(t)dt ≤ u(τ).

Thus, we have shown

φλ

ρ
<

% ∞

0

λ exp{−(λ+ ρ)t}a(t)dt ≤ u(τ).

Lemma B.4. If a design satisfies the constraints of the principal’s problem and τ < ∞,

then
% τ

0

λ exp{−(ρ+ λ)t}a(t)dt ≤ φλ

ρ
+ (a(τ)− φ

&φ
) exp{−ρ(τ − t)}− exp{−(ρ+ λ)τ}(a(τ)− φ).

Proof of Lemma B.4. The principal’s problem requires incentive compatibility on interval

[0, τ ]. Therefore, the optimal strategy of the principal’s problem restricted to interval [0, τ ]

is within the feasible set of the auxiliary problem with T = τ . It follows that
% τ

0

λ exp{−(ρ+ λ)t}a(t)dt ≤
% τ

0

λ exp{−(ρ+ λ)t}[φ&φ
+ (a(τ)− φ) exp(−ρ(τ − t))]dt,

where the bracketed term is the solution of the auxiliary problem, derived in Lemma B.1.

The rest follows by routine calculation.

Lemma B.5. If τ < ∞ in the optimal design, then a(τ) > φ

φ̂
.

Proof of Lemma B.5. Consider any design that satisfies the constraints of the principal’s

problem. We have,

u(τ) =

% τ

0

λ exp{−(ρ+ λ)t}a(t)dt+ exp{−(ρ+ λ)τ}(a(τ)− φ).

Applying the bound in Lemma B.4, we have

u(τ) ≤ φλ

ρ
+ (a(τ)− φ

&φ
) exp{−ρ(τ − t)}.

By Lemma B.3, we must have a(τ) > φ/&φ.

We wish to derive the optimal design by first solving for the best acceptance strategy for

exogenous finite cheating time τ and exogenous acceptance at the cheating time, a(τ), and

then optimizing over these two. From Lemma B.5, we need only consider a(τ) > φ/&φ, since
this is necessary if the optimal design has τ < ∞.
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Lemma B.6. Consider all designs (τ, ã(·)) that satisfy (i) incentive compatibility, (ii) feasi-

bility, (iii) τ < ∞, and (iv) ã(τ) = α ∈ (φ/&φ, 1]. Among such designs, an optimal acceptance

strategy is

a(t) =
φ

&φ
+ (α− φ

&φ
) exp{−ρ(τ − t)}

for t ∈ [0, T ] and a(t) = 1 for t ≥ T , where

T ≡ τ +

ln(
1−φ

"φ

α−φ
"φ
)

ρ

In addition, u(t) = u(τ) for all t ≤ T and u(t) < u(τ) for t > T .

Proof Lemma B.6. First, note that the proposed design satisfies all of the conditions stated

in the lemma. This can be directly verified by routine calculation (note, in particular, that

the proposed acceptance strategy is continuous at T ). Next, we will show that this design

performs better than any other design that meets the conditions of the lemma.

The acceptance strategy described in the lemma for t ≤ T solves the auxiliary problem on

time domain [0, T ], with a(τ) = α (see Proposition B.1). By implication, the principal’s

objective on this interval is weakly higher than for any other acceptance strategy, ã(·) that
satisfies the assumptions of the lemma. Recalling that T ≥ τ by construction, we have,

(1− θ)

% τ

0

λ exp(−(λ+ ρ)t)a(t)dt+ (1− θ)(1− σ)

% T

τ

λ exp(−(λ+ ρ)t)a(t)dt− θσ exp(−(λ+ ρ)τ)a(τ) ≥

(1− θ)

% τ

0

λ exp(−(λ+ ρ)t)ã(t)dt+ (1− θ)(1− σ)

% T

τ

λ exp(−(λ+ ρ)t)ã(t)dt− θσ exp(−(λ+ ρ)τ)ã(τ).

Next, recall that a(t) = 1 for t ≥ T . Feasibility implies that

(1− θ)(1− σ)

% ∞

T

λ exp(−(λ+ ρ)t)a(t)dt ≥ (1− θ)(1− σ)

% ∞

T

λ exp(−(λ+ ρ)t)+a(t)dt

The optimality of this acceptance strategy follows by adding these inequalities.

The last statement of the lemma can be verified directly by integration or by recalling that

IC binds on [0, T ] in the auxiliary problem, and that u′(·) < 0 on any interval in which

a(·) = 1.

Determining (τ,α). In Lemma B.6 we identify the optimal acceptance strategy that is

incentive compatible, has finite faking time, and has a target value a(τ) = α. In addition,

α > φ/&φ, which is a necessary condition for τ < ∞ to be optimal overall (Lemma B.5).
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By routine calculation, we can verify that as τ → ∞ the design of lemma B.6 and its payoff

approach the design and payoff of the one in Lemma B.2, which characterizes the optimal

acceptance strategy that satisfies IC and has τ = ∞. Thus, as long as we allow τ → ∞, we

can focus on the class of designs identified in Lemma B.5. Identifying the best (τ,α) in this

class will give the optimal overall design.

To facilitate this calculation, it is helpful to re-parameterize the acceptance strategy accord-

ing to the time, T , at which they hit 1. In particular, note that for any such strategy,

1 =
φ

&φ
+ (a(τ)− φ

&φ
) exp(−ρ(τ − T ))

a(τ) = (1− φ

&φ
) exp(ρ(τ − T )) +

φ

&φ

and hence, the acceptance strategy for t ≤ T can be written

a(t) =
φ

&φ
+ (1− φ

&φ
) exp(−ρ(T − t)).

Lemma B.7. Consider a design within the class defined by Proposition B.6. For fixed T ,

the optimal recommended cheating time is τ = T .

Proof of Lemma B.7. Consider a design in the class defined by Proposition B.6, and fix

a value of T . Note that the acceptance strategy does not depend on the recommended

cheating time τ . Furthermore, from Proposition B.6 we know that the only candidates for

the recommended cheating time are τ ∈ [0, T ] (recommending a time after T is not incentive

compatible). Consider a possible τ < T , and differentiate the principal’s payoff with respect

to τ ,

λ exp{−(λ+ ρ)τ}a(τ)− (1− θ)(1− σ)λ exp{−(λ+ ρ)τ}a(τ)
+θσ(λ+ ρ) exp{−(λ+ ρ)τ}a(τ)− θσ exp{−(λ+ ρ)τ}a′(τ) =

exp{−(λ+ ρ)τ}
)
λa(τ)− (1− θ)(1− σ)λa(τ) + θσ(λ+ ρ)a(τ)− θσa′(τ)

*
=

exp{−(λ+ ρ)τ}
)
(θ + σ)λa(τ)− θσλa(τ) + θσ(λ+ ρ)a(τ)− θσa′(τ)

*
=

exp{−(λ+ ρ)τ}
)
(θ + σ)λa(τ) + θσ(ρa(τ)− a′(τ))

*
.

Because τ < T , we have u′(τ) = 0, and hence, a′(τ) − ρa(τ) = φ(ρ + λ). Substituting, we

have

exp{−(λ+ ρ)τ}(λ(θ + σ)a(τ) + θσφ(λ+ ρ)) > 0.

Thus, no cheating time below T could be optimal, because the principal’s payoff is increas-

ing on this interval. Furthermore, because a(·) is continuous, the principal’s payoff is also
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continuous at τ = T . Therefore, selecting τ = T dominates any other feasible cheating

time.

What remains is to characterize T . To proceed, consider the principal’s payoff function,

evaluated at an acceptance strategy in the optimal class, with τ = T . We have

(1−θ)

% T

0

λ exp(−(ρ+λ)t)a(t)dt+(1−θ)(1−σ)

% ∞

T

λ exp(−(ρ+λ)t)dt−θσ exp(−(ρ+λ)T ).

Differentiating with respect to T (note that a(T ) = 1), we have

(1− θ)

% T

0

λ exp(−(ρ+ λ)t)
da(t)

dT
dt+ (1− θ)λ exp(−(ρ+ λ)T )

−(1− θ)(1− σ)λ exp(−(ρ+ λ)T ) + θσ(ρ+ λ) exp(−(ρ+ λ)T ).

Note that
da(t)

dT
= −ρ(1− φ

&φ
) exp(−ρ(T − t)).

Substituting, we have

−ρ(1− φ

&φ
) exp(−ρT )(1− θ)

% T

0

λ exp(−λt)dt+ (1− θ)λ exp(−(ρ+ λ)T )

−(1− θ)(1− σ)λ exp(−(ρ+ λ)T ) + θσ(ρ+ λ) exp(−(ρ+ λ)T )

Integrating, we have,

(1− θ)(1− exp(−λT ))(−ρ+ φ(ρ+ λ)) exp(−ρT ) + (1− θ)λ exp(−(ρ+ λ)T )

−(1− θ)(1− σ)λ exp(−(ρ+ λ)T ) + θσ(ρ+ λ) exp(−(ρ+ λ)T ).

Multiplying through by exp(ρT ) results in an equation that is linear in exp(−λT ). Solving,

we have

exp(−λT ) =
(1− θ)(ρ− φ(λ+ ρ))

(1− θ)(ρ− φ(λ+ ρ)) + σ(λ+ θρ)
,

exp(−λT ) =
(1− θ)(&φ− φ)

(1− θ)(&φ− φ) + σ(λ+θρ
λ+ρ

)

exp(−λT ) =
(1− θ)(&φ− φ)

(1− θ)(&φ− φ) + σ(1− &φ(1− θ))

Note that for φ < &φ the right hand side is positive, and it is obviously between 0 and 1.

Furthermore, as φ → &φ, the right hand side goes to 0, which implies that T → ∞. As φ → 0,

the optimal T with commitment solves

exp(−λT ) =
(1− θ)ρ

(1− θ)ρ+ σ(λ+ θρ)
.
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When ρ is small T is large, and vice versa. Thus, the optimal duration may be longer or

shorter than in equilibrium, and by implication, the agent’s level of utility may also be higher

or lower.

Once we have the structure of the optimal acceptance rule, coupled with the result that the

optimal recommended cheating time is τ = T , the principal’s tradeoff becomes relatively

straightforward. If the principal selects a short duration T , then he gets to accept honest

submissions before T with high probability. But if the agent is unethical and fails to have

an arrival, he will have to accept his fraudulent project at an earlier time, paying a larger

cost. Thus, short durations are desirable when the agent is likely to be the ethical type.

Note further that even when the agent is known to be strategic, the principal benefits from

a finite duration (unlike what happens in the equilibrium without commitment). Indeed,

without commitment, the phase of doubt lasts forever, and the principal gets no surplus. By

committing to a finite duration, the principal raises the acceptance probability for all real

arrivals before date T , at the cost of accepting a fraudulent project with certainty if no real

arrival comes before T .
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