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Abstract

This paper studies a dynamic model of information acquisition, in which information

might be secretly manipulated. A principal must choose between a safe action with known

payoff and a risky action with uncertain payoff, favoring the safe action under the prior

belief. She may delay her decision to acquire additional news that reveals the risky action’s

payoff, without knowing exactly when such news will arrive. An uninformed agent with

a misaligned preference may have the capability to generate a false arrival of news, which

is indistinguishable from a real one, distorting the information content of news and the

principal’s search. The analysis characterizes the positive and normative distortions in

the search for news arising from such manipulation, and it considers three remedies that

increase the principal’s payoff: a commitment to naive search, transfer of authority to the

agent, and delegation to an intermediary who is biased in the agent’s favor.
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1. Introduction

In the U.S. legal system, the decision to file charges against a suspect is usually made by
the local prosecutor’s office, based on an investigation conducted by the police department.1

Imagine that an extensive police investigation has uncovered circumstantial evidence that
implicates a suspect, but it has produced no direct evidence of the suspect’s guilt or innocence.
The prosecutor agrees with the police officer’s interpretation of the circumstantial evidence,
and both the prosecutor and the officer would like to see justice done. Nevertheless, the
prosecutor might be less inclined to pursue a case based on circumstantial evidence than the
officer would like: in an overloaded system, the prosecutor must consider the opportunity
cost, which is not borne by the officer. Furthermore, because a significant investigation has
failed to uncover direct evidence, the case may soon be closed. In this situation, a police
officer who believes that the suspect is probably guilty based on the circumstantial evidence
might be tempted to fabricate direct evidence against him.2 When deciding whether to pursue
the case, the prosecutor must therefore consider the possibility that seemingly conclusive
evidence may actually be fabricated, impacting the entire investigation.

Such issues are not confined to criminal investigations. A startup firm may not fully in-
ternalize a venture capitalist’s opportunity cost. Thus, the startup may believe its product to
be sufficiently viable to justify additional investment, but the VC may not be willing to invest
further given the information currently available. If additional information about product vi-
ability (e.g., a working prototype) takes too long to produce, the venture capitalist may with-
draw her investment. The startup may therefore be tempted to fabricate such evidence, rather
than lose its funding.3 When deciding whether to withdraw funding, the venture capitalist
must consider the possibility that evidence of a product’s viability might be fake. A simi-
lar scenario might unfold when a firm decides whether to launch a new project or expand a
division, or when a regulator decides whether to approve a product coming to market.

In this paper I study a dynamic principal-agent model of information acquisition, in which
information can be faked strategically. A principal faces a single, irreversible choice between
a safe action with a known payoff and a risky action with an uncertain payoff. The principal
is free to choose her action at any time, and the game continues until she makes this choice.

1 This is true of the vast majority of cases Gross, Possley, Roll, and Stephens (2020). The main exception is
federal cases, in which the decision to bring charges is made by a grand jury.

2 Gross, Possley, Roll, and Stephens (2020) document various types of police misconduct that distort evi-
dence in criminal cases, including but not limited to planting physical evidence, coercing a false confession,
misrepresenting the results of forensic analysis, and procuring false testimony or identifications from witnesses.

3 An example is the medical device company Theranos, whose “pathbreaking” product was fake.
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The payoff of the risky action might be higher or lower than the payoff of the safe action,
but under the prior belief, the principal prefers safe. The agent has no private information
about the risky payoff, and he obtains the same payoff as the principal if the risky action is
chosen. But, if the safe action is chosen, then the agent’s payoff is smaller than the principal’s.
The principal and agent agree on the best action in the absence of uncertainty. However, the
agent’s safe payoff is small enough that he prefers the risky action under the prior belief,
generating a conflict of interest between the parties that can only be resolved with additional
information. The agent has a privately known type, manipulative or normal, which is described
in more detail below.

The principal can delay her choice in order to acquire additional information about the
risky payoff. Information arrives through a news process, which generates a single arrival
of news at some time. A real news arrival accurately reports the payoff of the risky action,
either supporting the risky action or opposing it. The arrival time of real news is uncertain,
and it is drawn from a continuous prior distribution that is independent of the risky payoff.
If this arrival time is reached, then real news is instantly produced. Fake news is generated
by the manipulative agent in order to influence the principal’s decision. At any time he likes,
the manipulative agent can fabricate a news arrival that supports the risky action. Though
it is fake, such an arrival appears real. Thus, when news arrives, the principal cannot directly
observe whether it is real or fake; she must infer this from the manipulative agent’s strategy.
The normal agent does not have the ability to generate fake news, and he waits passively for
the game to end.

The conflict of interest distorts the search for information. In each player’s “first best,” he
or she has full control over the timing and action and only real news arrives. Each player de-
cides how long to wait for real news before stopping the search and selecting the action that
he or she prefers under the prior belief. Because the arrival of real news could reveal that each
player’s favorite action under the prior is actually wrong, news is valuable for both players.
Provided its arrival rate is sufficiently high, each player waits for some time before terminat-
ing the search and taking an action. Furthermore, when the preference misalignment is not
too large, the agent’s first best search duration is longer than the principal’s—the paper fo-
cuses on this case.4 In the game, the principal must consider the possibility that a news arrival
that conveys favorable information about the risky action is actually fake. She may therefore
treat such news with skepticism, selecting the safe action instead of risky. Furthermore, the
possibility that future news is manipulated undermines its informativeness and reduces its

4 In the context of the introductory examples, the prosecutor’s and VC’s opportunity costs are not too high.
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value. Consequently, the principal may terminate her search early, selecting the safe action
before news arrives. Compared to the agent’s first best, these distortions in the principal’s
search strategy make it more difficult for him to implement the risky action, which he prefers
under the prior. Thus, if the principal’s skepticism is currently low and the chance of early
termination is high, then the manipulative agent may try to implement the risky action by
faking favorable news.

When the probability of the manipulative type is not too large, the game has a unique
equilibrium with some intriguing features. The equilibrium incorporates two deadlines, an
early “soft deadline” and a later “hard deadline.” Before the soft deadline, the agent does
not fabricate news. The principal follows the advice implied by any news arrival and only
selects an action if news arrives. In other words, before the soft deadline, equilibrium search
is identical to each player’s first best. Once the soft deadline is reached, the search for news
becomes distorted. At each time between the soft and hard deadlines, the agent randomly
fakes a news arrival, and the principal randomly terminates the search by choosing the safe
action. Despite the positive likelihood of fabrication by the manipulative type, news that
supports the risky action is sufficiently informative to overturn the principal’s prior in favor of
safe, convincing her to select the risky action. A manipulative agent fakes a news arrival with
probability one before the hard deadline. Thus, reaching the hard deadline with no arrival
reveals that the agent is normal and all future arrivals are real. Nevertheless, the principal
stops the search at the hard deadline, which coincides with her first best search duration.

Though equilibrium search lasts until the hard deadline with positive probability, from a
normative perspective, it is identical to a first best search that is terminated at the soft dead-
line, too soon for either player’s liking. Before the soft deadline, equilibrium search is undis-
torted, but once the soft deadline is reached, each player randomizes. Each player is therefore
indifferent over all times between the soft and hard deadline. From a normative perspective,
the principal may as well choose safe at the soft deadline, and the agent may as well fake,
inducing risky. Thus, each player’s equilibrium payoff is as if he or she waits until the soft
deadline and then selects his or her favorite action under the prior if no real news has arrived.

The equilibrium can be interpreted as a “stochastic unraveling” of the first best. Imag-
ine that the principal searches “naively,” simply following her strategy from the first best
benchmark without considering the possibility of fake news: she acts on all news that ar-
rives before (or at) the hard deadline, picking the safe action if no news comes. In this case,
the manipulative agent would not fake before the hard deadline. Before it is reached, the
agent is always able to induce the risky action by faking a bit later, and waiting allows more
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time for valuable real news to arrive. At the hard deadline, however, waiting is no longer
an option: the agent must fake an arrival immediately, in order to preempt the principal’s
imminent choice of safe, resulting in masses of faking and search termination concentrated
at the hard deadline.5 In the unique equilibrium of the game, these probability masses are
spread backwards in time, resulting in an interval with continuous mixing, starting from the
soft deadline and ending at the hard one. In this sense, the naive search stochastically un-
ravels into the unique equilibrium. Furthermore, a higher prior probability of a manipulative
agent intensifies the agent’s preemption motive, producing a longer unraveling and an ear-
lier soft deadline. If the probability of the manipulative type exceeds a threshold, then the
initial phase of first best search collapses. In this case a multiplicity of equilibria arises. In
all of them, the principal gains nothing from search: her payoff is as if she implements safe
immediately.

Motivated by these normative features, I consider three simple forms of commitment that
mitigate the agent’s preemption motive. First, I allow the principal to commit to implement
the “naive search” strategy described above. By guaranteeing that she will select risky if fa-
vorable news arrives at the hard deadline, the principal eliminates the agent’s preemption
motive and the resulting unraveling. The manipulative agent simply waits until the hard
deadline to fake without worrying that he “tips his hand” by being too predictable. From
the principal’s perspective, such a commitment mimics the first best, except for one scenario:
when no real news comes before the hard deadline and the agent is manipulative, she se-
lects risky instead of safe. When the probability of a manipulative agent is not too high, the
principal benefits from a commitment to naive search. Thus, when the probability of manip-
ulated news is relatively small, the principal might want to pretend that it does not exist. The
principal might therefore wish to introduce institutional features that allow her to “plausibly
deny” the existence of fake news.

A more straightforward commitment by the principal transfers authority over the search
and action to the agent. The principal need not pretend, she can simply step back and allow
the agent to do as he sees fit. In this case, there is clearly no preemption motive for the agent.
The principal’s search is nevertheless distorted, because the agent selects the wrong action
if he terminates the search without news, and he does so at the wrong time. The cost of
these distortions may be small; if so, the principal would like to transfer all authority to the
agent. Thus, if delegation is feasible, then the credible threat of news manipulation allows
the agent to command outsized influence within the organization, despite having no private

5 These masses are inconsistent with equilibrium. Anticipating such a faking strategy, the principal would
ignore news that arrives at the deadline, incentivizing the agent the fake a bit sooner.

4



information that is relevant to the choice of action.

Finally, I consider a more nuanced form of delegation in which the principal allocates the
decision authority to an intermediary, whose payoff from the safe action is between hers and
the agent’s. On one hand, the conflict of interest between intermediary and agent is smaller,
which shifts the soft deadline toward a later time and extends the duration of the initial “first
best” phase. On the other hand, once the soft deadline is reached, the intermediary is indiffer-
ent between continuing the search and selecting the safe action with no news. The principal’s
safe payoff is larger than the intermediary’s, and therefore the principal would like to termi-
nate the search at all times after the soft deadline. Thus, delegation is harmful if the search
extends for too long and is (weakly) helpful otherwise. When the equilibrium of the main
model has beneficial search, such delegation benefits the principal. For example, the prosecu-
tor benefits when the decision to indict a suspect is made by a grand jury that places a bit less
weight on the opportunity cost of trial.

Related Literature. In my paper, information acquisition is modeled as a stopping problem
in the spirit of Wald (1947) and Arrow, Blackwell, and Girshick (1949). While the classic liter-
ature focuses on a single searcher,6 Brocas and Carrillo (2007) and Henry and Ottaviani (2019)
study Wald stopping in settings where authority over the final decision and search duration
is split between a principal and agent. These authors show that even without the ability to
manipulate the realization of the news process, controlling the stopping decision can benefit
the agent. In my analysis, the agent has the ability to stop the search: by faking, he shuts
off the news process, which forces the principal to choose an action immediately. However,
the agent does not benefit from this ability. In particular, if the agent cannot fabricate a news
arrival but can take an action that stops the search, in equilibrium he would never do so.

A number of related papers consider stopping problems with observable manipulation of
the news process (Aghion and Jackson, 2016; Kuvalekar and Lipnowski, 2020; Orlov, Skrzy-
pacz, and Zryumov, 2020). In this strand, Che, Kim, and Mierendorff (2022) (CKM) is closest
to my analysis. These authors consider a dynamic persuasion model in which an uninformed
sender designs a flow experiment at each instant but cannot commit to future experiments.
Similar to my model, the receiver’s expectation of future informativeness affects her stopping
strategy, which itself affects sender’s incentive to manipulate the flow experiment. Unlike my
model, which often has a unique equilibrium, in CKM a range of mutual expectations can be
sustained, resulting in multiple equilibria. More broadly, in my model the agent’s manipu-

6 Recent contributions by Che and Mierendorff (2019) and Liang, Mu, and Syrgkanis (2022) endogenize a
single searcher’s information by allowing her to choose which source(s) to sample among a set of available
signals. In my analysis the information structure is endogenous, but it arises from a strategic interaction.
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lation of the news manipulation is unobservable. This difference is crucial: if manipulation
were observable in my model, then the agent would not manipulate in equilibrium.7

I am aware of only one other paper that studies a similar stopping problem with unob-
servable news manipulation.8 Ekmekci, Gorno, Maestri, Sun, and Wei (2022) consider a drift-
diffusion model in which an informed sender would like to persuade the receiver to wait by
secretly inflating an informative performance measure, showing that observed performance
tends to spike just before receiver stops. This model differs from mine in two key respects:
information arrives continuously, and the agent is informed about his type. These modeling
differences imply a distinct set of applications and generate different results.9

Finally, my paper is related to Boleslavsky and Taylor (2023) (BT), which studies fraud
in the context of production. With respect to this paper, there are a number of substantive
differences in focus, model, and results. First, in BT the agent’s incentive to cheat comes
from impatience—he wants to obtain a reward quickly. In contrast, in my paper the agent
fakes news in order to influence the principal’s action.10 Second, in BT the principal does
not have an outside option, and thus, the stopping decision at the heart of my analysis is
absent. Third, the equilibrium structure differs significantly. In BT, the agent fakes a project
randomly in an early phase, and the principal mixes between approving and rejecting such a
project when it arrives. In the late phase, all distortions vanish. In my paper, this structure is
reversed: the search for news is distorted in the late phase of the equilibrium. Furthermore,
the principal’s response to faking is also different. In BT the principal randomizes between
approval and rejection after a project arrives. In my paper, principal randomizes between
stopping and waiting before news arrives; if it arrives, she always “approves” it by selecting
the recommended action.

7 My analysis also connects to an emerging literature on dynamic information design, whereby a sender
commits to a long run communication protocol in order to influence a receiver’s decision(s) over time (Ely,
2017; Halac, Kartik, and Liu, 2017; Renault, Solan, and Vieille, 2017; Ely and Szydlowski, 2020). The pioneering
contribution of Kamenica and Gentzkow (2011), who study information design in a static setting, is also related.
Juxtaposed with this literature, the agent’s lack of commitment in my analysis is even more pronounced.

8 Dilme (2019) studies a dynamic signaling model in which an informed sender’s unobserved effort affects a
public news process. Unlike my analysis, the sender decides when to stop; see also Kolb (2015, 2019).

9 For example, in the context of venture capital, the setting of Ekmekci, Gorno, Maestri, Sun, and Wei (2022)
suggests that the firm is relatively established. Its current operations generate a continuous performance mea-
sure, and its past has endowed management with private information about its potential for success. In contrast,
my setting suggests that the firm is just getting started: a breakthrough (in R&D, perhaps) is still needed for the
firm to be viable, and it has not operated for long enough to acquire private information about its ability.

10 In my model even a perfectly patient agent would manipulate news in equilibrium, provided the players
prefer different actions under the prior belief.
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2. Model

An organization consists of a principal and an agent, who play a game in continuous time.
At any time she likes, the principal makes a single irreversible decision, choosing either a safe
or risky action. When the principal chooses an action, the game ends and the players’ payoffs
are realized. The safe action (S) delivers known lump-sum payoffs θ ∈ (0, 1) and β ∈ (0, θ) to
principal and agent respectively, while the risky action (R) delivers an uncertain lump-sum
payoff ω ∈ {0, 1}, identical for both players. Thus, the preference misalignment stems from
the safe action, which gives the agent a smaller payoff than the principal.11 Although the
players would select the same action if the payoff of the risky action were known, uncertainty
about it creates disagreement. In particular, the players have a common prior belief µ ≡
Pr(ω = 1), where β < µ < θ. In this case, the principal prefers the safe action under the prior,
but the agent prefers the risky action. The agent and principal both discount future payoffs at
rate ρ and have zero flow payoffs. In addition, the agent has a privately known type, either
manipulative or normal, whose significance is described below. At the outset, the principal
believes that the agent is manipulative with probability σ ∈ (0, 1).

Though she prefers the safe action given the prior belief, the principal may delay her
decision in order to acquire additional information about ω. Both players observe a news
process which generates a single arrival of news—either real or fake—at some time. A real
news arrival accurately reports the payoff of the risky action. Thus, real news comes in two
varieties “type-0” and “type-1,” and a real news arrival is type-ω if and only if the risky
payoff is ω ∈ {0, 1}. The arrival time of real news is uncertain, and both players believe it
is distributed according to continuous cumulative distribution function G(·), with associated
density g(·), and decreasing hazard rate HR(·), supported on R+.12 If the arrival time of real
news is reached, then real news is instantly produced. Note that the arrival time of real news
is statistically independent of the payoff of the risky action (and the agent’s type). Thus, the
content of real news is informative about the risky payoff, but its arrival time is not.

Fake news is produced strategically in order to influence the principal’s decision. In partic-
ular, the manipulative type of agent has the ability to produce an instant arrival of fake type-1
news, which is indistinguishable from real type-1 news that could have arrived at the same

11 A similar preference structure, featuring a misaligned payoff with respect to a single action, also appears
in the cheap talk model of Che, Dessein, and Kartik (2013).

12 The decreasing hazard rate implies that pessimism about the likelihood of a real news arrival grows over
time, strengthening the incentive to stop. The analysis is unchanged if there is a positive probability that no
news arrives, limt→∞ G(t) < 1. One example is an exponential bandit: if real news exists, then its arrival time is
exponentially distributed; otherwise, it never arrives.
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moment.13 The normal type of agent does not have the ability to fabricate news and waits
passively for the principal’s decision. In light of this, “the agent” should be understood as the
manipulative type.

Three observations streamline the subsequent exposition and analysis. First, recall that the
news process delivers only one arrival. Thus, the principal chooses between safe and risky
immediately when news arrives. Second, recall that type-0 news is never faked.14 Therefore,
type-0 news is fully revealing, and the principal immediately selects the safe action when it
arrives. Third, the non-arrival of news before a given time conveys no information about
the payoff of the risky action. In particular, the arrival time of real news is drawn from G(·),
and this arrival time is statistically independent of ω. Furthermore, because the agent has no
private information about ω, the arrival time of fake news is also statistically independent
of ω, regardless of the agent’s strategy. The arrival time of news is the smaller of the real
and fake arrival times. Because both of these times are statistically independent of the risky
payoff, their minimum is also. Thus, players’ beliefs about the risky payoff do not change in
the absence of news (see also footnote 19). By implication, at all times before news arrives,
the principal prefers the safe action and the agent risky.

First-Best Benchmarks. To clarify the broader implications of the conflict of interest between
the players (and in anticipation of the analysis to follow), it is helpful to understand how
each player would search for real news in isolation. We therefore consider two “first-best”
benchmarks, one for the principal and one for the agent. In both benchmarks, the relevant
player has full authority over the decision and search, and the news is always real. Thus,
in either benchmark, the player selects safe following a type-0 arrival and risky following a
type-1. Furthermore, as described above, the passage of time does not affect players belief
about the risky payoff. Thus, if acting without news, the principal defaults to safe, and the
agent risky.

Therefore, the crucial decision for each player in the first-best benchmark is the search
duration—how long to wait for news before selecting the default action. For i ∈ {A,P}, let
uFB
i (t) be player i’s expected payoff of selecting search duration t in the first-best benchmark.

13 I focus the case where generating a fake is costless. A small faking cost can be incorporated into the analysis
with minimal changes to the results. In particular, only the principal’s equilibrium strategy adjusts when a small
cost is included.

14 If the agent had the ability to fake or suppress an arrival of type-0 news, he would not choose to do so in
equilibrium. Because the agent is uninformed and a type-0 arrival might be real, type-0 news is always weakly
bad news about the risky action and induces safe. Thus, he would never fake a type-0 arrival, since the agent
prefers risky without a real type-0 arrival. If a real type-0 arrival does occur, however, then the agent prefers
safe, and he would want it to be implemented immediately. Unlike Shadmehr and Bernhardt (2015) and Sun
(2023), the agent has no incentive to suppress or censor type-0 news.
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In addition, let

φP ≡ ρθ

µ(1− θ)
φA ≡ ρµ

β(1− µ)
.

The numerator of φi represents player i’s marginal cost of delaying his or her default acton by
an instant, while the denominator represents the gains from selecting the correct action (in-
stead of the default action) if news arrives. I introduce two assumptions on these parameters
that streamline subsequent analysis,

A1: HR(0) > φP > HR(∞) A2: φP > φA, or equivalently, β > β ≡ µ(
µ

θ
)(
1− θ

1− µ
).

The significance and interpretation of (A1) and (A2) will be discussed below. For now, note
that µ < θ ⇒ β < µ. Thus, the set of β that is consistent with (A2) is non-empty.

The following result characterizes each player’s optimal search duration in his or her first
best benchmark.

Lemma 1. (First-Best Benchmarks). In player i ∈ {A,P} first-best benchmark,

(i) uFB
i (·) is a continuous, differentiable, single-peaked function.

(ii) if (A1), then principal’s optimal search duration τP is strictly positive and finite, and it is the
unique value such that HR(τP ) = φP .

(iii) if (A2), then agent’s optimal search duration τA is larger than the principal’s, and it is the unique
value such that HR(τA) = φA

In the first-best benchmark, player i ∈ {A,P} waits for news until time τi, at which the
hazard rate of real news arrivals reaches φi.15 Despite their disagreement over the default ac-
tion, both players may wish to wait for news, since the arrival of real news could reveal that
their default action was actually the wrong choice. However, because the players disagree
over the default action, they may also disagree over the duration of first-best search. A1 en-
sures that the principal selects a positive and finite duration in her first best benchmark. A2
ensures that the agent’s first best search duration is longer than the principal’s. This assump-
tion softens (but does not eliminate) the disagreement over search duration, streamlining the
analysis and exposition.16 It holds whenever the preference misalignment is not too large.

15 These are essentially the first order conditions for each player. By marginally extending her search, the
principal allows a bit of extra time for news to arrive, but imposes costly delay if it does not.

16 Suppose the agent prefers a longer first best duration and the principal follows her first best strategy. If
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3. Equilibrium Analysis

3.1. Preliminaries.

Strategies. A pure strategy for the manipulative agent is a “faking time,” t ∈ {R+ ∪∞}, at
which the agent will fake type-1 news if the game has not yet ended. A mixed strategy is a
probability measure over “faking times,” t ∈ {R+∪∞} represented by cumulative distribution
function FA(·).

The principal’s strategy consists of two parts. The first component of the principal’s strat-
egy describes the search duration. The principal selects a stopping time, t ∈ {R+ ∪ ∞}. If
the principal’s stopping time is reached with no news, then she stops the search and selects
the safe action (which is optimal in the absence of news). A mixed stopping strategy specifies
a probability measure over stopping times, represented by cumulative distribution function
FP (·). The second component of the principal’s strategy specifies her decision when news
arrives. Because type-0 news is always real, its arrival reveals that ω = 0, and the principal
selects safe. If type-1 news arrives at t ∈ R+, then the principal selects the risky action with
probability a(t).17 If a(t) = 1, then the principal “acts on” or “follows” the news at time t.

The analysis focuses on the case in which the players’ mixed strategies (FA(·), FP (·)) have
an absolutely continuous component and a discrete component (with no continuous singular
component). In particular, for i ∈ {A,P},

Fi(t) = F ∗
i (t) +

!

m∈M

I(t ≥ tm)fm,

where M is a countable set indexing the set of atoms, tm is the time of atom m, fm is the
probability assigned to atom m, I(·) is the standard indicator function, and F ∗

i (·) is absolutely

no news comes by the principal’s chosen deadline, the agent would like the principal to extend the search, but
he has no action that would allow him to do so. Thus, he fakes at or just before the deadline only to preempt
the principal’s imminent choice of safe. In contrast, if the agent prefers a shorter duration and the principal
follows her first best strategy, then he would fake when his preferred duration is reached, which also induces
his preferred action. In this case, the equilibrium strategy is shaped both by the agent’s incentive to preempt the
safe action and to terminate search early. This case is substantially more complicated and is left for future study.

17 An ambiguity arises if type-1 news arrives at the exact same time that the principal intends to stop the
search and select safe—does she select risky according the news response profile, or does she select safe? The
analysis assumes that the principal selects safe in this case. In other words, in the small period [t, t + dt] the
principal decides whether to terminate the search before observing whether news arrives. This assumption can
be adjusted with minimal impact on the results, though some of the notation becomes more cumbersome.
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continuous. In the standard way,

Fi(t) =

" t

0

f ∗
i (s)ds+

!

m∈M

I(t ≥ tm)fm,

where f ∗
i (·) is the derivative F ∗

i (·) almost everywhere. To economize on notation, it is helpful
to represent the atoms using the Dirac δ(·). In particular, let fi(s) ≡ f ∗

i (s)+
#

m∈M fmδ(s− tm).
Using the notation convention for the Dirac δ(·),18

Fi(t) =

" t

0

fi(s)ds.

In the text, fi(t) is sometimes loosely referred to as the “probability mass” on t.

Payoffs. From the perspective of each player, the other’s strategy distorts the first best.
These distortions are described below and are used to derive each player’s payoff function.

Principal. From the principal’s perspective the agent’s faking strategy distorts the news pro-
cess. In particular, when the payoff of the risky arm is low, the agent may fake type-1 news
before real (type-0) news arrives. This has implications for the arrival times of type-0 and
type-1 news, as well as the information content of type-1 news.

Suppose that the principal intends to wait for news until time t and then select the safe
action. Her search for news can end in three ways—an arrival of type-0 news before t, type-1
news before t, or no news before t.

Because the agent never fakes type-0 news, it can only arrive from the real news process.
Thus, such an arrival occurs at some time s < t if the payoff of the risky arm is low, real news
arrives at s, and fake news does not arrive before s. In turn, fake news takes longer than s

unless the agent is manipulative and his chosen faking time is smaller than s. Combining
these observations, the probability mass of a type-0 arrival at s is

wP
0 (s) = (1− µ)g(s)(1− σFA(s)).

In contrast, type-1 news can be faked by the manipulative agent, and it can therefore arrive
even when the payoff of the risky action is zero. In particular, an arrival of type-1 news at time
s < t can occur in three mutually exclusive ways: (1) ω = 1, real news arrives at s, fake news

18 In particular,
! t1
t0

δ(s)ds = I{t0 ≤ 0 ≤ t1).
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takes longer, (2) ω = 1, fake news arrives at s, real news takes longer, (3) ω = 0, fake news
arrives at s, real news takes longer. The probability mass of a type-1 news arrival at s is

wP
1 (s) = µg(s)(1− σFA(s))$ %& '

(1)

+µσfA(s)(1−G(s))$ %& '
(2)

+(1− µ)σfA(s)(1−G(s))$ %& '
(3)

= µg(s)(1− σFA(s)) + σfA(s)(1−G(s)).

No news arrives at or before time t if and only if the arrival times of both real news and
fake news exceed t,19

W P
φ (t) ≡ Pr(no news at or before t) = (1−G(t))(1− σFA(t)).

The information content of type-1 news is also affected by the agent’s faking—it is not
necessarily fully revealing. In particular, of the three ways that type-1 news could arrive at
time s (described above), only the first two have ω = 1. Thus, the principal’s belief that ω = 1,
given an arrival of type-1 news at time s is

µ1(s) ≡ Pr(ω = 1|type-1 news at s) =
µg(s)(1− σFA(s)) + µσfA(s)(1−G(s))

µg(s)(1− σFA(s)) + σfA(s)(1−G(s))
. (1)

Note that the denominator of µ1(s) is always strictly positive, and therefore this belief can be
derived using Bayes’ rule at all times s ≥ 0.

Building on these observations, if the principal waits for news until time t and acts on
news according to a(·), her expected payoff is

uP (t) =

" t

0

exp(−ρs){wP
0 (s)θ + wP

1 (s)((1− a(s))θ + a(s)µ1(s))}ds (2)

+exp(−ρt)W P
φ (t))θ.

Agent. Compared to his single-player benchmark, the principal’s stopping strategy and action
profile restrict the agent’s ability to implement the risky action. In his single-player problem,
the agent could stop waiting for real news and select risky at any time. However, in the game
with the principal, he faces two distortions: the principal may stop the search and select the

19 Note that the joint probability Pr(no news at or before t|ω = 1) = Pr(no news at or before t|ω = 0) =
WP

φ (t). That is, conditional on ω, no news arrives by t if and only if real news takes longer than t (probability
1 − G(t)) and fake news takes longer than t (probability 1 − σFA(t)). By implication, the posterior belief that
ω = 1 given no news arrival by t is the prior, µ. Similar logic applies for the agent.
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safe action before news arrives, and even if type-1 news arrives at t the principal selects the
risky action with probability a(t), which may be less than 1.

Suppose that the agent intends to fake at some time t if it reached. The search for news
can end in three ways. First, there could be an arrival of real news at time s < t, which occurs
before the principal stops her search. The probability mass of such an arrival is

wA
0 (s) = (1− µ)g(s)(1− FP (s))

wA
1 (s) = µg(s)(1− FP (s)),

where the subscript denotes the type of news arrival. Second, the principal could stop her
search at s < t, before news arrives. The probability mass of such an arrival is

wA
S (s) = fP (s)(1−G(s)).

Finally, the agent’s intended faking time t could be reached without a news arrival. In other
words, real news takes longer than t, and the principal’s stopping time exceeds t, which occurs
with probability

WA
φ (t) = (1−G(t))(1− FP (t)).

Thus, if the agent waits until time t to generate a fake, his expected payoff is

uA(t) =

" t

0

exp(−ρs){wA
0 (s)β + wA

1 (s)((1− a(s))β + a(s)) + wA
S (s)β}ds (3)

+exp(−ρt)WA
φ (t)((1− a(t))β + µa(t)).

In the previous expression, if the search ends with the arrival of type-1 news, the agent is
confident that ω = 1, and his payoff is 1 if the principal selects the risky action. In contrast, if
the search ends at t with no news, then the agent’s belief that ω = 1 is still the prior µ. Thus,
if the risky action is chosen at t (in response to the fake type-1 arrival), the agent’s expected
payoff is µ.

Equilibrium. A profile of strategies (a(·), FP (·), FA(·)) is an equilibrium if and only if

(i) The agent’s faking strategy FA(·) is optimal given the principal’s strategy (a(·), FP (·)),

(ii) For all times t ≥ 0, the principal’s response to type-1 news, a(t) is optimal given µ1(t),
her posterior belief that ω = 1 following the arrival of type-1 news at t (derived in (1)).
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(iii) The principal’s stopping strategy FP (·) is optimal given the agent’s strategy FA(·) and
her response to type-1 news, a(·).

Condition (i) holds if and only if

fA(t) > 0 ⇒ uA(t) ≥ uA(t
′) for all t, t′. (4)

That is, the agent’s mixed strategy assigns positive mass (or probability) only to faking times
that generate the highest possible payoff.

Condition (ii) holds if and only if

a(t) =

(
)))*

)))+

1 if µ1(t) > θ

[0, 1] if µ1(t) = θ

0 if µ1(t) < θ,

(5)

for all t ≥ 0. By selecting safe, the principal obtains guaranteed payoff θ, but following type-1
news at time t her expected payoff of risky is µ1(t), her posterior belief that ω = 1 given type-
1 news at t, which is derived from Bayes’ rule at all times (see (1)). The principal selects the
action with the larger expected payoff, mixing only if the payoffs are equal.

Condition (iii) holds if and only if

fP (t) > 0 ⇒ uP (t) ≥ uP (t
′) for all t, t′. (6)

In other words, optimal stopping for the principal requires that her strategy assigns positive
mass (or probability) only to times that generate the highest possible payoff.20

3.2. Equilibrium With Beneficial Search

This section characterizes equilibria in which the principal benefits from the ability to
search for news despite the agent’s manipulation, which are the main focus of the analy-
sis. Equilibria in which the principal does not benefit from the ability to search are studied
(briefly) in Section 3.3.

In an equilibrium with beneficial search, the principal’s equilibrium payoff exceeds θ, her
payoff from making a decision immediately based only on the prior belief. To develop intu-

20 Each player’s mixed strategy can be optimal even if it assigns positive mass to a set of t at which ui(t) is
suboptimal, as long as the probability of a realization in this set is zero. However, if the realization of the player’s
faking time happened to be in this set, the player would be tempted to redraw it.
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ition for the structure of such an equilibrium, first consider a “naive search” by the principal.
In particular, suppose that the principal adopts her strategy from the first-best benchmark:
wait for news until stopping time τP and then select safe, while acting on all news that arrives
(a(·) = 1). As long as the principal’s stopping time τP has not passed, the agent’s payoff is
identical to his first-best benchmark—the distortions associated with the principal’s stopping
are absent. Therefore, the agent’s payoff is increasing in his faking time if t < τP (his first-best
payoff has a single peak at τA > τP ). Thus, the agent would not want to fake at such times,
which reinforces the principal’s incentive to wait for news (principal’s first-best payoff has a
single peak at τP ). However, if time τP passes without a real news arrival, the principal stops
on the safe action, which the agent dislikes under the prior belief. Thus, the agent would pre-
fer to preempt the principal’s stopping by generating a fake arrival of type-1 news just before
τP , thereby inducing the principal to select risky. Anticipating that it is fake, principal would
ignore the type-1 arrival at time τP , and the agent would like to preempt earlier, “unraveling”
the search for news backwards from time τP .

To explore this unraveling in more detail, it is helpful to consider incentives at two small
adjacent time periods, an early period and a late period, both of which precede τP . For ease
of discussion, suppose that within-period, the news arrival occurs before the principal’s stop-
ping decision.21 As described above, unraveling is triggered by the agent’s expectation that
the principal will stop at the end of the late period in the absence of news, which incentivizes
the agent to fake at the beginning of the late period in order to preempt the principal’s im-
minent choice of safe. Anticipating such a faking strategy, the principal would be skeptical
about such a convenient arrival of type-1 news. Indeed, with this faking strategy the prob-
ability of a real arrival in the late period is low (the period is small), but the probability of a
fake is high. Thus, the principal identifies the arrival of type-1 news in the late period as a
likely fake and ignores it, selecting safe in the late period whether or not type-1 news arrives.
But if she always selects safe in the late period, why wait? It is better for the principal to avoid
the cost of discounting by selecting safe at the end of the early period. Of course, if the agent
anticipates such early stopping by the principal, he would want to preempt it by faking in
the early period. However, if the manipulative agent always fakes early, then the principal
does not want to stop her search at the end of the early period. Indeed, if no news comes
in the early period, the principal concludes that the agent is not the manipulative type and
that any future news is real. She therefore wants to wait for news until τP . Thus, the agent
wants to fake in the same period that the principal stops, but the principal wants to stop in

21 In other words, if the principal plans to stop her search in a period, and type-1 news arrives in the period,
then she selects risky according to her strategy a(·).
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the other period. This cyclical structure of best responses suggests that the search unravels
stochastically: the principal mixes between stopping in the early period and the late period,
and the agent mixes between faking early and late.

Extended to continuous time, the preceding intuition suggests that in equilibrium, the
atom of stopping and faking that would be concentrated at τP under a “naive search” un-
ravels into an interval of times with smooth, stochastic stopping and faking. But, if search is
beneficial for the principal, the stochastic unraveling cannot extend all the way to time 0. If
it does, then the principal’s payoff is the same as if she immediately terminates the search for
news by selecting safe, i.e., θ. Furthermore, the unraveling cannot leave an atom of fakes at
τP ; the existence of such an atom triggered the unraveling in the first place. Provided there is
no atom of fakes at τP , an atom of stopping by the principal could occur at this time, since the
agent’s faking strategy preempts the entire atom for certain.

The following proposition formalizes this intuition by characterizing the structure of an
equilibrium with beneficial search.

Proposition 1. (Structure of Beneficial Search Equilibrium.) If an equilibrium with beneficial search
exists, then it has the following structure. There exists τM > 0 such that

(i) the agent’s faking time is drawn from a mixed strategy with no mass points or gaps, supported on
interval [τM , τP ].

(ii) the principal’s stopping time is drawn from a mixed strategy with no gaps, supported on interval
[τM , τP ]; τP is the only possible mass point in the principal’s stopping strategy.

(iii) the principal selects risky following type-1 news at all times, a(t) = 1 for all t ≥ 0.

Consistent with the “stochastic unraveling” intuition described above, an equilibrium
with beneficial search time features two deadlines: a soft deadline τM , and a hard deadline
τP . If the hard deadline is reached with no news, the principal stops the search and selects
safe. Before the soft deadline, the players incentives to wait for news are mutually reinforcing:
during this phase there is no stopping by the principal or faking by the agent, and equilib-
rium search is identical to each player’s first best. However, past τM , the search becomes
distorted. At the soft deadline, the principal becomes “barely engaged” in search—she acts
on a news arrival if one occurs, but she may terminate the search at any moment if one does
not. The manipulative agent becomes “anxious” about the arrival rate of real news (which
has decreased) and about the principal abandoning the search by selecting the safe action be-
fore news arrives. Consequently, he begins to fake randomly, which undermines the value of
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information and reinforces the principal’s minimal engagement in the search. Although type-
1 news is randomly fabricated during this phase, it remains sufficiently informative that the
principal prefers to select the risky action when such news arrives. Maintaining the principal’s
“bare engagement” with the search requires that a future type-1 news arrival is expected to be
sufficiently informative to offset her cost of delay. By implication, such an arrival must also
be informative enough to induce the risky action.

The equilibrium structure also reveals an interesting normative feature. The support of
each player’s mixed strategy begins at τM , the soft deadline. Below τM , there is no stopping
or faking, and each player’s payoff coincides with the first best. Furthermore, optimality of
player strategies (4, 6) imply that each player’s equilibrium payoff is equal to the payoff of
stopping the search or faking at τM . Because there are no atoms at τM , this payoff is simply
the first-best payoff evaluated at τM . Thus, each player’s payoff in the beneficial search equi-
librium equal to the payoff he or she would receive in the first-best benchmark, but with a
premature stopping time, τM < τP < τA. In other words, if real news arrives in equilibrium
before τM , then both players get their first-best payoffs. But if the equilibrium search extends
past τM , players’ payoffs are as if they simultaneously implemented their default actions at
τM , even though these default actions are different.

The following proposition completes the characterization of equilibria with beneficial search,
deriving necessary and sufficient conditions for existence, establishing uniqueness, and pro-
viding closed-form expressions for the players’ strategies.

Proposition 2. (Equilibrium With Beneficial Search). An equilibrium with beneficial search exists if
and only if σ < σ, where

σ ≡ 1− exp{−
" τP

0

µ(1− θ)HR(s)− ρθ

θ − µ
ds}.

In such an equilibrium, then the players’ faking and stopping strategies are

FA(t) =
1

σ

,
1− exp{−

" t

τM

µ(1− θ)HR(s)− ρθ

θ − µ
ds}

-
,

FP (t) = 1− exp{−
" t

τM

β(1− µ)HR(s)− ρµ

µ− β
ds} for t ∈ [τM , τP ) and FP (τP ) = 1,

both supported on [τM , τP ], where τM is the unique value for which

1− exp{−
" τP

τM

µ(1− θ)HR(s)− ρθ

θ − µ
ds} = σ.
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Figure 1 – Equilibrium Strategies FA(·), FP (·)
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Figure 2 – Equilibrium payoffs uA(·), uP (·)

The equilibrium payoff of player i ∈ {A,P} is uFB
i (τM). No other equilibrium with beneficial search

exists.

The equilibrium is illustrated graphically in Figures 1 and 2, which depict the equilib-
rium strategies and payoff functions of the players. As illustrated in Figure 1, the agent
smoothly mixes on the equilibrium support [τM , τP ], but the principal’s strategy has an atom
at τP . Because of this atom, the agent’s payoff of waiting to fake until τP has a downward
jump discontinuity. The jump in the agent’s payoff does not disrupt the equilibrium, be-
cause the manipulative agent fakes the news with probability 1 before time τP under his
strategy. In other words, time τP is only ever reached if the agent is not the manipulative
type; therefore, the principal’s atom of stopping at this time does not disrupt the incentives
of the manipulative agent. This atom has another interesting implication. Together with
a(·) = 1 (see Proposition 1), the atom’s existence implies that the principal engages in a “naive
search” with positive probability in equilibrium. To an outside observer, it may appear that
the principal is completely unaware that the agent may have the ability to produce fake news,
even though her equilibrium strategy accounts fully for this possibility.

Next, consider the informativeness of news in a beneficial search equilibrium. Although
the underlying real news process is fully revealing, the equilibrium news observed by the
principal is distorted by the agent’s faking. Consistent with the intuition underlying stochas-
tic unraveling and Proposition 1, type-1 news is always sufficiently informative to induce the
principal to select the risky action when it arrives. However, the informativeness of type-1
news is non-monotone in the arrival time. At early times, before the soft deadline, type-1
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arrivals are fully revealing. At the soft deadline, µ1(t) drops discontinuously, and it increases
gradually over the equilibrium support. At the hard deadline, type-1 news is fully revealing
once again. The principal nevertheless prefers to exit at the hard deadline—even though a fu-
ture news arrival reveals the risky payoff, it comes too slowly to justify additional delay. Thus,
the informativeness of type-1 news exhibits a pattern of collapse and recovery, as formalized
in the following corollary.

Corollary 1. (Beneficial Search, Beliefs). In an equilibrium with beneficial search,

(i) the posterior belief that ω = 1 given type-1 news at t is

µ1(t) =

(
)))*

)))+

1 if t ∈ [0, τM)

θ + (θ − µ) ρθ
HR(t)µ(1−µ)−ρθ

if t ∈ [τM , τP ]

1 if t ∈ [τP ,∞).

(ii) belief µ1(t) has a downward jump at τM , is strictly increasing on [τM , τP ), and is continuous at
τP . In addition, an ε > 0 exists such that µ1(t) ≥ θ + ε at all t ≥ 0.

(iii) type-0 news reveals that ω = 0 at all times.

The informativeness of the equilibrium news process is undermined most significantly
near the soft deadline, at the earliest times in the support of the agent’s distribution of faking
times. This might be surprising, given that the manipulative agent “panics” as the hard dead-
line approaches and the hazard rate of faking approaches infinity at the hard deadline. This
effect arises from a “feedback loop” in the principal’s beliefs about the agent’s type. Reaching
a time near the hard deadline without a type-1 arrival is, in and of itself, a strong signal that
the agent is not manipulative, suggesting that a type-1 arrival is likely real. The manipulative
agent exploits the principal’s optimism by faking aggressively. If type-1 news does not ar-
rive, it is an even stronger signal that the agent is not manipulative, further reinforcing the
manipulative type’s incentive to fake an instant later, and so on. The informativeness of type-
1 news increases over time because the agent is less likely to be manipulative as time passes,
which counteracts the increased aggressiveness of the manipulative agent’s faking.

The comparative statics with respect to {σ, θ} are helpful in subsequent analysis. Intu-
itively, an increase in θ intensifies the preference misalignment between players, as well as
the disagreement over default action and search duration.22 Thus, we might expect that the

22 When the safe payoff is higher, the principal prefers safe more strongly under the prior, and in addition,
prefers an even shorter duration under the first best, shifting it further away from the agent’s.
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equilibrium distortions might be stronger, shifting the soft and hard deadlines, as well as the
players’ strategies toward earlier times. Meanwhile, σ determines the salience of the mis-
alignment: if it is low, it is unlikely that the agent can affect the principal’s action, even if he
would gain more by doing so. Effectively, increases in σ intensify the conflict of interest and
reductions weaken it. Thus, we might expect increases in σ to shift the soft deadline and the
player’s strategies toward earlier times, resulting in a stronger distortion from the first best.

Corollary 2. (Beneficial Search, Comparative Statics). In an equilibrium with beneficial search,
changes in model parameters have the following effects:

(i) An increase in σ reduces τM , has no effect on τP , and generates a first order stochastic dominance
shift in the stopping and faking strategies toward earlier times.

(ii) An increase in θ reduces τM and τP , and generates a first order stochastic dominance shift in the
stopping and faking strategies toward earlier times.

The normative properties of the equilibrium are also worth discussing further. As the
probability of the agent being the faker increases, the stochastic unraveling intensifies and
the soft deadline τM shifts toward zero, thereby reducing the value of search and the equilib-
rium payoffs of the principal and manipulative agent. Furthermore, if the probability of the
manipulative type is too large, then the unraveling completely undermines the value of search
for the principal: no equilibrium with beneficial search exists. Perhaps the most striking nor-
mative feature of Proposition 2 is that the stochastic unraveling can completely undermine
the value of search, even if the degree of preference misalignment between principal and
agent is arbitrarily small. Indeed, provided that the players disagree over the default action
(µ ∈ (β, θ)), (A2) holds, and the agent is sufficiently likely to be manipulative, search has no
value for the principal in equilibrium regardless of the degree of preference misalignment.

3.3. Equilibrium Without Beneficial Search

The preceding analysis implies that equilibrium with beneficial search exists only for a
subset of parameters, in particular, when the prior probability of the manipulative agent is
not too high. In the remaining situations, if an equilibrium exists, it must be such that search
is not beneficial. Does such an equilibrium indeed exist when σ > σ? Furthermore, the
logic of strategic unraveling described above suggests a strategic complementarity between
the principal’s stopping and the agent’s faking. Could it be that, because of this strategic
complementarity, multiple equilibria exist for some values of σ < σ, one with beneficial search
and another (or others) without?
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This section answers the preceding questions, providing a partial characterization of equi-
libria in which the principal does not benefit from search. In particular, Proposition 3 estab-
lishes that an equilibrium without beneficial search exists if and only if σ is sufficiently large.
Intuitively, if it is too unlikely that the agent can manipulate the news process, then he cannot
“jam” the real news process enough to undermine its value completely. Furthermore, such an
equilibrium exists whenever the equilibrium with beneficial search does not (σ > σ).

Proposition 3. (Equilibrium Without Beneficial Search). An equilibrium without beneficial search
exists if and only if σ ≥ σ, for some σ ≤ σ < 1.

The structure of such equilibria are worth discussing further. Note that if the principal
does not benefit from search in equilibrium, then her equilibrium payoff cannot be higher
than θ, her payoff of choosing an action based on the prior alone. Simultaneously, uP (0) = θ,
regardless of the agent’s strategy. Therefore, in such an equilibrium the principal’s equilib-
rium payoff must be θ. Thus, if such an equilibrium exists, then choosing safe immediately is
a best response to the agent’s equilibrium strategy. Furthermore, if the principal chooses safe
immediately, then the agent is indifferent over all possible faking times (his payoff is always
β). In particular, the agent’s faking strategy continues to be optimal. By implication, imme-
diate stopping for the principal, coupled with the agent’s original strategy is also an equilib-
rium. Thus, an equilibrium without beneficial search exists if and only if a faking strategy
exists, such that immediate stopping is the principal’s best response. Thus, it is possible that
the agent selects an adversarial strategy in equilibrium which minimizes the principal’s pay-
off and induces her to stop immediately. However, if the principal were to search, the agent
would like to deviate. Without further restriction on the agent’s strategies, for σ ∈ (σ, σ) it is
possible that an equilibrium with beneficial search and without beneficial search coexist.

The equilibria without beneficial search can be further refined. One approach is to intro-
duce a refinement similar to subgame perfection. Another approach considers a perturbed
game in which there is a small probability that principal is a behavioral type who follows the
naive search strategy. Either approach ensures that equilibria without beneficial search exist
if and only if σ > σ, eliminating the possible multiplicity for σ ∈ (σ, σ).23

4. Normative Remedies

The fundamental incentive problem in this game comes from the agent’s preemption mo-
tive, which triggers the stochastic unraveling of the search for news. Here, I describe three

23 To streamline the exposition, I omit the argument. Additional details available upon request.
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simple remedies that mitigate or eliminate the agent’s preemption motive, deriving condi-
tions under which they improve the principal’s payoff. To streamline the analysis, I focus on
the beneficial search equilibrium for σ ∈ (σ, σ).

Commitment to Naive Search. Consider a commitment by the principal to carry out a naive
search, in which she waits until τP to stop and acts on all news that arrives at or before
this time. Effectively, the principal blinds herself to the possibility that the agent might be
the manipulative type and behaves as if all news is real. Such a commitment eliminates the
agent’s preemption motive. In particular, because the principal always waits at t < τP , and the
agent can induce the risky action by faking type-1 news, the search is identical to the agent’s
first best at t < τP . Thus, the agent has no incentive to fake at such times since he prefers
a longer search duration in a first best search, i.e., t < τP < τA. Given that the principal
acts on it, the agent would therefore wait until τP to fake a type-1 arrival. Without a binding
commitment to act naively, the principal would recognize the fake and select the safe action
if type-1 news arrives at τP , triggering the agent to preempt. In contrast, with this binding
commitment, the agent has no incentive to preempt: he can fake at τP and still induce the
risky action.

Though it eliminates the agent’s preemption motive and the stochastic unraveling, such
a commitment does not fully restore the principal’s first-best search. In particular, if τP is
reached without a real news arrival, in the first-best the principal would like to stop and
select the safe action. However, if she commits to a naive search, she may be forced to select
risky. Indeed a manipulative agent will fake type-1 news at τP . Following through on her
commitment, the principal must select risky in this instance. In particular, with a commitment
to naive search, the principal’s expected payoff is

uN
P =

" τP

0

exp(−ρs)g(s)(µ+ (1− µ)θ)ds+ exp(−ρτP )(1−G(τP ))((1− σ)θ + σµ)

= uFB
P (τP )− exp(−ρτP )(1−G(τP ))σ(θ − µ).

The next proposition shows that such a commitment is always valuable for the principal
if the equilibrium (without commitment) has beneficial search. More broadly, such a commit-
ment is valuable unless the agent is very likely to be manipulative, so that the probability of
selecting risky at the deadline is high.

Proposition 4. (Naive Search). If the prior probability of the manipulative agent is not too high, then
the principal’s payoff with a commitment to naive search is higher than her equilibrium payoff in the
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main model. If σ < σ, then commitment to naive search delivers a higher payoff to principal than
the unique equilibrium without commitment, which has beneficial search. If σ ∈ (σ, .σN) for some
σ < .σN ≤ 1, then commitment to naive search delivers a higher payoff to the principal than any
equilibrium without commitment, all of which feature non-beneficial search.

When the probability of manipulation is relatively low, the principal would like to pretend
that manipulation is impossible. To support this pretense, the principal could develop an in-
stitution that allows her to plausibly deny the possibility of fabricated news. As awareness
of such manipulation grows, it becomes more difficult for the principal to maintain this fa-
cade, threatening her commitment to naive search. To the extent that the principal is aligned
with society more broadly, increased awareness of fabricated or manipulated information can
therefore be counterproductive, unless it is also accompanied by increased accountability.

Delegating Authority to the Agent. Next, suppose that the principal can transfer the au-
thority over the search and action directly to the agent. Doing so completely eliminates the
agent’s preemption motive, but it introduces an additional distortion in the decision process.
In particular, if the agent controls the search, then he waits for news until τA > τP and if
this time is reached without real news, then he selects risky: compared to the principal’s first
best, the agent waits too long for news and selects the wrong default action. Furthermore,
unlike the naive search, where the risky action was selected at the deadline only if the agent
is manipulative, with delegation the risky action is always chosen if the agent’s deadline is
reached. Thus, the principal’s payoff of delegating authority to the agent is

uD
P =

" τA

0

exp(−ρs)g(s)(µ+ (1− µ)θ)ds+ exp(−ρτA)(1−G(τA))µ

= uFB
P (τA)− exp(−ρτA)(1−G(τA))(θ − µ).

As a first step, consider a simple choice for the principal: either she delegates the search to the
agent, or she terminates the search immediately and selects the safe action. If the principal
would rather terminate than delegate (uD

P < θ), then the conflict of interest between the play-
ers is severe; otherwise it is mild. Obviously, with a severe conflict of interest, delegation could
never be optimal—the principal’s equilibrium payoff always exceeds θ when she retains au-
thority. Note that θ and β can be arbitrarily close without violating any parametric assumption
of the model, and in this case, uD

P ≈ uFB
P (τP ) > θ.24 In other words, when the θ and β are close,

24 HR(0) > ρ/(1− θ) guarantees (A1). Furthermore, as discussed in footnote 2, (A2) holds if β ∈ (β, µ). Thus,
θ and β can be arbitrarily close to each other. It follows that θ ≈ µ and τP ≈ τA.

23



the conflict of interest is mild. Next, note that as long as µ > θ, we have σ < 1. By implication,
there is a range of large σ where the principal’s payoff in the equilibrium is close to (or equal
to) θ. Continuity of the principal’s equilibrium payoff as a function of σ delivers the following
result.

Proposition 5. (Delegating to Agent). If the conflict of interest is mild and the prior probability of
the manipulative agent is sufficiently high, then the principal’s payoff from delegating authority to the
agent is higher than her equilibrium payoff in the main model. With a mild conflict and σ > σ, the
principal’s payoff with delegation is higher than her payoff in any equilibrium of the main model. In
addition, if σ ∈ (.σD, σ) for some 0 < .σD < σ, then the principal’s payoff with delegation is higher
than her payoff in the unique equilibrium of the main model, which features beneficial search.

Proposition 5 suggests that the credible threat of manipulation of the news process allows
the agent to gain outsized influence over the decision. Indeed, if the conflict of interest is rela-
tively mild and the agent can probably manipulate the news, the principal would rather give
the agent full authority over the search and decision than initiate a (possibly) manipulated
search. Even though the agent has no private information about the best action, he is nev-
ertheless granted complete authority over the decision. This contrasts with the classic logic
supporting delegation, which is based on the agent’s ability to access or produce superior
payoff-relevant information (Aghion and Tirole, 1997; Dessein, 2002).

Delegating Authority to an Intermediary. In this section, a milder form of delegation is
analyzed: the principal delegates the decision authority to a third party whose payoff from
the safe action is different than her own. This section focuses on the more interesting case
σ < σ, which implies that the unique equilibrium has beneficial search. In addition, we focus
on the principal’s incentive to delegate “locally,” so that the intermediary’s payoff from the
safe of option, θI , is not too far from θ. In this way, we can ensure that (A1) and (A2) are
satisfied by the intermediary and that the equilibrium between the intermediary and agent
features beneficial search.

By delegating to an intermediary, principal alters the equilibrium search for news: the in-
centives of the agent and intermediary determine the equilibrium, rather than the principal.
Thus, with delegation the equilibrium is characterized by Proposition 2 with the intermediary
standing in for the principal. Building on the comparative statics derived in Corollary 1, con-
sider the effects of delegating authority to an intermediary with a smaller payoff from the safe
action. On one hand, such an intermediary has a smaller preference conflict with the agent.
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By delegating to such an intermediary, the principal weakens the incentives for stochastic un-
raveling, shifting the soft deadline to a later time. Thus by delegating, the principal extends
the duration of the first best search, which increases her expected payoff. On the other hand,
delegating authority to an intermediary also affect the agent’s faking strategy. In equilib-
rium, the intermediary is indifferent between continuing the search and stopping at all times
between the soft and hard deadlines if there has been no news. But the principal’s payoff
of stopping the search and selecting safe is higher, and she therefore prefers to stop at all
such times. In other words, when she delegates, the principal’s payoff function is decreasing
between the soft and hard deadlines. Although her payoff is higher at the soft deadline, if
the search extends for too long beyond it, the principal is harmed. This cost is particularly
salient: by delegating, the principal shifts both the intermediary’s stopping strategy and the
agent faking strategy toward later times, increasing the likely duration of the search.

To make this discussion precise, consider the equilibrium of Proposition 2, with inter-
mediary playing the role of principal. To distinguish the equilibrium with delegation, the
intermediary’s preference parameter is included explicitly in the notation. Thus, τP (θI) is the
intermediary’s first best search duration (and the hard deadline when it has the authority),
τM(θI) is the soft deadline, FA(·|θI), FP (·|θI) are the equilibrium strategies of the agent and
intermediary when it plays the role of principal, and uP (t|θI , θ) is the principal’s equilibrium
expected payoff conditional on the intermediary’s stopping time t. Note that the equilibrium
strategies and the hard and soft deadline depend only on the intermediary’s safe payoff θI ,
but the principal’s safe payoff enters explicitly into uP (t|θI , θ). Indeed, whenever the interme-
diary selects the safe action, the principal’s payoff is θ. In particular, we have

uP (t|θI , θ) = uFB
P (τM(θI)) +

" t

τM (θI)

exp(−ρs){wP
0 (s|θI)θ + wP

1 (s|θI)µ1(s|θI)}ds+ exp(−ρt)W P
φ (t|θI)θ,

where use has been made of the fact that the intermediary always selects the risky action
following type-1 news in equilibrium (see Proposition 1). Recalling that the intermediary’s
equilibrium strategy has a mass point on τP (θI) but is otherwise differentiable, we have that
the principal’s expected payoff of delegating to intermediary with preference parameter θI is

U(θI |θ) =
" τP (θI)

τM (θI)

fP (s|θI)uP (s|θI , θ)ds+ (1− FP (τ
−
P (θI)|θI))uP (τP (θI)|θI , θ)

=

" τP (θI)

τM (θI)

(1− FP (s|θI))u′
P (s|θI , θ)ds+ uFB

P (τM(θI)),
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Figure 3 – Strategies, Delegation FA(·|θI), FP (·|θI)

t
τP τP (θI)τM τM (θI)

θ

uFB
P (τM )

Figure 4 – Delegation payoff uP (·|θI , θ)

where the last line follows from an integration by parts.25 In this form, tradeoff is apparent: by
delegating to an intermediary with a smaller payoff of the safe action, the principal extends
the soft deadline and the duration of first best search, but if the soft deadline is reached with
no news continued search is strictly harmful.

The tradeoff of delegating is illustrated graphically in Figures 3 and 4. Figure 3 illustrates
the shift toward later stopping and faking times induced by delegation to an intermediary
with a smaller payoff from the safe option. The dashed curves represent the equilibrium
strategies when the principal keeps authority for herself, while the solid curves are the strate-
gies under delegation. Figure 4 illustrates the principal’s payoff when she delegates to an
intermediary with safe payoff θI , and when the intermediary select stopping time t. The solid
blue curve is this payoff, uP (·|θI , θ), while the dashed blue curve is the principal’s payoff from
keeping authority herself.

The following proposition shows that the benefits of extending the first best search out-
weigh the harm.

Proposition 6. (Delegating to an Intermediary.) If σ < σ, then the principal benefits by delegating
decision authority to an intermediary whose payoff from the safe option is smaller than her own. In
particular, a θ∗I < θ exists, such that the principal benefits from delegation if θI ∈ (θ∗I , θ). Furthermore,
if the principal delegates authority to such an intermediary, then in equilibrium she is never tempted

25 See Proof of Proposition 6.
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to overrule the intermediary’s chosen action.

The second part of Proposition 6 highlights another difference between delegating to an
intermediary and the agent. When delegating authority to the agent, the principal is tempted
to overrule the agent if he tries to select risky at time τA. When delegating to an intermediary
with a small bias, the principal will not be tempted to overrule the intermediary’s choice of
risky action. As shown in Corollary 1, the posterior belief that ω = 1 given an arrival of type-1
news exceeds θI , and furthermore, the gap is strictly positive. If θI and θ are close, then the
same is also true of θ.

5. Conclusion

I have studied a model of information acquisition, in which information can be faked
strategically. A principal must choose between a safe action with a known payoff and a risky
action with an uncertain payoff. An arrival of real news reveals the payoff of the risky action,
arriving at an uncertain future time. The principal prefers the safe action under the prior,
but she can wait for news to arrive. An agent has a smaller payoff of the safe action and
prefers risky under the prior. The agent may have the ability to fabricate a news arrival that
is indistinguishable from a real one.

The disagreement over the best action under the prior belief incentivizes preemption by
the agent. whenever the principal stops before news arrives, she selects risky. Thus, if the
agent expects that the principal is about to stop, he has an incentive to fake a news arrival, in
order to induce the risky action, which he prefers under the prior belief. The agent’s faking
undermines the value of future news, which creates an incentive for her to stop without news.

From a positive perspective, two distortions arise in equilibrium. When the probability
that the agent can manipulate news is not too high, the equilibrium features an early phase
of undistorted search, followed by a phase in which agent randomly fakes news and the
principal randomly stops before news arrives. Though it is sometimes manipulated, all news
is sufficiently informative for the principal to follow. From a normative perspective, the pos-
sibility of faking undermines the value of information and reduces the principal’s payoff.
If the probability that the agent can fabricate news is sufficiently high, the benefits of news
are undermined completely. I study three straightforward remedies that mitigate the agent’s
preemption motive and increase the value of search.

The model can be extended in a number of interesting directions. The current version
studies only a single dynamic interaction between the players. It might be interesting to
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consider incentives of an agent who interacts with principals repeatedly. In this case, the
agent may be concerned about revealing his ability to fake to future principals, which may
temper his incentive to manipulate. Another possibility is to consider stronger commitment
power for the principal. While I have focused on relatively simple forms of commitment
that dampen the agent’s preemption motive, it would be interesting to know how the agent’s
ability to fake news allows him to obtain rents, even when the principal can commit to her
entire strategy. I plan to address these and other related questions in future work.
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6. Appendix

Proof of Lemma 1. Consider the first-best benchmark for player i. Let (di, si) be player i’s
expected payoff of the default action, and safe action respectively. That is (dP , sP ) = (θ, θ) and
(dA, sA) = (µ, β). We have

uFB
i (t) =

" t

0

exp(−ρx)g(x)(µ+ (1− µ)si)dx+ exp(−ρt)(1−G(t))di.

G(·) is differentiable, and therefore

d

dt
uFB
i (t) = exp(−ρt)g(t)(µ+ (1− µ)si)− di exp(−ρt)(ρ(1−G(t) + g(t))

= exp(−ρt)(1−G(t))(µ+ (1− µ)si − di){HR(t)−
diρ

µ+ (1− µ)si − di
}.

Note that di < µ+(1−µ)si−di for i ∈ {A,P}. It follows that the first three terms are positive.
The sign of the derivative is therefore determined by the sign of the fourth term. Because
HR(·) is decreasing, the derivative of uFB

i (·) crosses zero at most once, and if it exists, this
crossing is from above. It follows that uFB

i (·) is single-peaked. Under A1 and A2, the peak is
at a strictly positive t. Substituting (di, si), for i ∈ {A,P}, we find that the crossing occurs at
τi such that HR(τi) = φi. A1 and A2 imply τA > τP > 0.

6.1. Proof of Proposition 1

The proof makes use of a number of lemmas, stated in the next section. To simplify the
exposition, the proofs of the lemmas are presented in the Supplemental Appendix.

6.2. Lemmas

Observation 1. Note that
" t

0

wP
0 (s) + wP

1 (s)ds+W P
φ (t) = 1.

Indeed, the integral is the probability that a type-0 or type-1 arrival occurs at times less than
or equal to t, while W P

φ (t) is the probability that an arrival of news takes longer than t. Rear-
ranging, for t1 ≤ t2 we have

" t2

t1

wP
0 (s) + wP

1 (s)ds = W P
φ (t1)−W P

φ (t2).
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Similarly, for the agent we have,

" t2

t1

wA
0 (s) + wA

1 (s) + wA
S (s)ds = WA

φ (t1)−WA
φ (t2).

Lemma 2. If (5), then inequalities (i), (ii), (iii) hold,

(i) uP (t
′)− uP (t) ≤ (1− σFA(t)){uFB

P (t′)− uFB
P (t)} for t < t′.

(ii) uP (t) < uP (τP ) for τP < t ≤ ∞.

(iii) uP (t
′)− uP (t) ≥ −(exp(−ρt)− (exp(−ρt′))W P

φ (t)θ for t < t′.

(iv) Part (i) holds as an equality if FA(t) = FA(t
′).

Lemma 3. If (5), then uP (·) is continuous, regardless of the agent’s strategy.

Lemma 4. If (5) and (6), then FP (τP ) = 1.

Definition: Let

v(t) ≡
" t

0

exp(−ρx)g(x)(µ+ (1− µ)β)dx+ exp(−ρt)(1−G(t))β.

Lemma 5. Inequalities (i), (ii) hold for t < t′ ≤ τP , regardless of the principal’s strategy.

(i) uA(t
′)− uA(t) ≤

(1− FP (t)){v(t′)− v(t)}+ exp(−ρt′)WA
φ (t

′)(µ− β)a(t′)− exp(−ρt)WA
φ (t)(µ− β)a(t).

(ii) uA(t
′)− uA(t) ≥

{exp(−ρt′)WA
φ (t

′)a(t′)− exp(−ρt)WA
φ (t)a(t)}(µ− β)− {exp(−ρt)− exp(−ρt′)}WA

φ (t)β

(iii): if FP (t) = FP (t
′), a(t) = a(t′) = 1, and a(s) = 1 for almost all s ∈ (t, t′), then

uA(t
′)− uA(t) = (1− FP (t))(u

FB
A (t′)− uFB

A (t)).

Lemma 6. Suppose (4). If a(t) < 1 and FP (t) < 1 for some t, then

(i) an ε′ > 0 such that a(t′) < 1 for t′ ∈ [t, t+ ε′).

(ii) an ε′′ > 0 exists such that for a(t′′) < 1 for t′′ ∈ (t− ε′′, t], provided t > 0.

Lemma 7. Suppose an interval 0 ≤ t1 < t2 ≤ τP exist such that FA(t1) = FA(t2). If (5) and (6), then

(i) fP (t) = 0 for all t ∈ [t1, t2).
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(ii) If t1 > 0, then there exists t0 < t1 such that fP (t) = 0 for all t ∈ [t0, t2).

Lemma 8. Suppose an interval [t1, t2) exists such that FP (t1) = FP (t2) < 1. In equilibrium, fA(t) =
0 for all t ∈ [t1, t2).

Lemma 9. Suppose 0 < t1 < t2 ≤ τP and FP (t1) = FP (t2) < 1. In equilibrium, FP (t) = FP (t2) for
all t ∈ [0, t2].

Lemma 10. Suppose 0 < t1 < t2, FP (t2) < 1, and FA(t1) = FA(t2). In equilibrium, FA(t) = FA(t2)

for all t ∈ [0, t2].

6.3. Proof of Proposition 1

The Proposition is proved by establishing a number of claims. Each claim assumes the exis-
tence of an equilibrium with beneficial search, and its conclusion describes a property of such
an equilibrium.

Let ti, for i ∈ {P,A} denote the maximum of the support of the principal’s and agent’s stop-
ping strategies, respectively.

Claim 1. tA = tP = τP .

Proof of Claim 1. Step 1: tP > 0. Suppose tP = 0. It follows immediately that FP (t) = 1 for all
t ≥ 0. That is, the principal terminates the search at time 0. Regardless of the agent’s strategy,
uP (0) = θ. Therefore, the principal does not benefit from search.

Step 2: tP ≤ τP . Follows immediately from Lemma 4.

Step 3: tA > 0. Suppose tA = 0, i.e., FA(t) = 1 for t ≥ 0. It follows immediately that fA(t) = 0

for all t > 0. From Lemma 7, we have fP (t) = 0 for all t ∈ [0, τP ). From Lemma 4, we have
FP (t) = I(t ≥ τP ). From Lemma 5 part (iii), the uA(t)−uA(0) = uFB

A (t)−uFB
A (0) for 0 < t < τP .

Because t < τP < τA, Lemma 1 implies uFB
A (t)− uFB

A (0) > 0. Thus fA(0) = δ(0) violates 4.

Step 4: tA ≥ tP . Suppose tA < tP . For t ∈ (tA, tP ), we have fA(t) = 0, and therefore FA(t) =

FA(tA). Furthermore, tA < tP implies FP (tA) < 1. Applying Lemma 10, we have FA(t) =

FA(tA) for all t ∈ [0, tA]. In other words, the CDF of the agent’s strategy is constant from 0 up
to and including the top of the support tA. It follows that tA = 0, contradicting Step 3.

Step 5: For any ε > 0, there exists t ∈ (tP − ε, tP ) such that a(t) = 1.

Suppose not. An ε > 0 exists such that a(t) < 1 for all t ∈ (tP − ε, tP ). It follows that for all
t ∈ (tP − ε, tP ], we have fA(t) > 0 and µ1(t) = θ. Therefore, for tP − ε ≤ t′′ < t ≤ tP we have

uP (t)− uP (t
′′) =

" t

t′′
exp(−ρs)(wP

0 (s) + wP
1 (s))θds+ exp(−ρt)W P

φ (t)θ − exp(−ρt′′)W P
φ (t′′)θ
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≤ exp(−ρt′′)

" t

t′′
(wP

0 (s) + wP
1 (s))θds+ exp(−ρt)W P

φ (t)θ − exp(−ρt′′)W P
φ (t′′)θ.

Using Observation 1, we have

uP (t)− uP (t
′′) ≤ exp(−ρt′′)(W P

φ (t′′)−W P
φ (t))θ + exp(−ρt)W P

φ (t)θ − exp(−ρ(t′′)W P
φ (t′′)θ

=− {exp(−ρt′′)− exp(−ρt)}W P
φ (t)θ < 0,

where the last inequality follows from W P
φ (t) = (1 − σFA(t))(1 − G(t)) > 0 for all t ≥ 0. It

follows from (6) that fP (t) = 0 for all t ∈ (tP − ε, tP ], contradicting the assumption that tP is
the maximum of the support of the principal’s stopping strategy.

Step 6: tA ≤ tP . Consider any t′ > tP . From Step 5 we have that for any ε, there exists some
tε ∈ (tP − ε, tP ) such that a(tε) = 1. It follows that

uA(t
′)− uA(tε) = uA(t

′)− uA(tP )$ %& '
A

+ uA(tP )− uA(tε)$ %& '
B

.

Focus first on A. For t ∈ [tP , t
′] we have FP (t) = 1, and for t ∈ (tP , t

′] we have fP (t) = 0. Thus,

uA(t
′)− uA(tP ) = 0.

Next, focus on B. From Lemma 5, we have

uA(tP )− uA(tε) ≤ (1− FP (tε)){v(tP )− v(tε)}− exp(−ρtε)W
A
φ (tε)(µ− β) ⇒

uA(tP )− uA(tε)

1− FP (tε)
≤ v(tP )− v(tε)− exp(−ρtε)(1−G(tε))(µ− β).

Because v(·) is continuous, for ε sufficiently small, we have v(tP )− v(tε) ≈ 0. Simultaneously,
exp(−ρtε)(1 − G(tε))(µ − β) > exp(−ρτP )(1 − G(τP ))(µ − β) > 0, where the last inequality
follows because exp(−ρ·)(1 − G(·)) is decreasing and Step 2 (tε < tP < τP ). Therefore, for ε

sufficiently small, there exists tε such that RHS is strictly negative. It follows that B is strictly
negative. Recalling that A is 0, we have uA(t

′) − uA(tε) < 0. Therefore, a tε exists such that
uA(t

′) − uA(tε) < 0 for all t′ > tP . From (4), we have fA(t
′) = 0 for all such t′. It follows that

tA ≤ tP .

Step 7: tP = tA = τP . Combining Steps 2, 4, and 6 we have tP = tA ≤ τP . Suppose that the
inequality is strict, i.e., tP < τP . Because tA = tP , for all t ∈ [tP , τP ] we have FA(t) = 1. Using
Lemma 2 part (iv), uP (t)− uP (tP ) = (1− σFA(tP ))(u

FB(t)− uFB(tP )) for all t ∈ [tP , τP ]. Note
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that uFB(t) − uFB(tP ) > 0 for such t (see Lemma 1). Therefore, uP (t) > uP (tP ). Note further
that continuity of uP (·) (see Lemma 3) implies that uP (tP ) = u∗

P , the principal’s equilibrium
payoff. Thus, uP (t) > u∗

P , which contradicts (6).

Let ti, i ∈ {P,A}, denote the bottom of the support of the principal and agent stopping strat-
egy, respectively.

Claim 2. tP = tA = τM , for some τM > 0.

Proof of Claim 2. Step 1: tP > 0. From Lemma 3, in equilibrium uP (·) is continuous. It follows
that uP (tP ) = u∗

P , the principal’s equilibrium payoff. Note that uP (0) = θ, regardless of the
agent’s strategy. Therefore, if tP = 0, then u∗

P = θ. In this case, the principal does not benefit
from search.

Step 2: tA ≤ tP . First, suppose tA = 0. From Step 1, we have tP > 0; thus Step 2 follows
immediately. Second, consider tA > 0. Note that tA ≤ tA = τP , where the equality is Claim 1.
Next, consider any t′ ∈ (0, tA). Because t′ < tA, we have FA(t

′) = FA(0) = 0. From Lemma 7,
we have fP (t) = 0 for all t ∈ [0, t′). Because t′ can be chosen arbitrarily close to tA, we have
fP (t) = 0 for all t ∈ [0, tA). Therefore, tP ≥ tA.

Step 3: tA ≥ tP . Consider any t′ ∈ [0, tP ). For such t′, we have FP (0) = FP (t
′) = 0. Using

Lemma 8, we have fA(t) = 0 for all t ∈ [0, t′). Because t′ can be chosen arbitrarily close to tP ,
we have fA(t) = 0 for all t ∈ [0, tP ). Therefore, tA ≥ tP .

Step 4: tA = tP = τM > 0. Combining Steps 2 and 3 we have tA = tP = τM , for some τM ≥ 0.
Using Step 1, we have τM > 0.

Claim 3. The support of FA(·) is the interval [τM , τP ].

Proof of Claim 3. It must be shown that FA(t2) − FA(t1) > 0 for any interval (t1, t2) where
τM < t1 < t2 < τP . Suppose that there exists an interval (t1, t2) satisfying the required bounds
such that FA(t1) = FA(t2). Furthermore, because τM < t2 < τP , the max and min of the
support, we have 0 < FA(t2) < 1. From Lemma 10, we have FA(t) = FA(t2) for all t ∈ [0, t2).
Therefore, FA(0) > 0. By implication τM = 0, which contradicts Step 4.

Claim 4. The support of FP (·) is the interval [τM , τP ].

Proof of Claim 4. It must be shown that FP (t2) − FP (t1) > 0 for any interval (t1, t2) where
τM < t1 < t2 < τP . Suppose that there exists an interval (t1, t2) satisfying the required bounds
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such that FP (t1) = FP (t2). Furthermore, because τM < t2 < τP , the max and min of the
support, we have 0 < FP (t2) < 1. From Lemma 9, we have FP (t) = FP (t2) for all t ∈ [0, t2).
Therefore, FP (0) > 0. By implication τM = 0, which contradicts Step 4.

Claim 5. The principal acts on type-1 news at all times, i.e. a(t) = 1 for all t ≥ 0.

Proof of Claim 5. First, consider t < τM and suppose that a(t) < 1 for such t. From Lemma
6, an interval (t1, t2) exists such that t1 ≤ t < t2 and a(t′) < 1 for all t′ ∈ (t1, t2). Furthermore,
a(t′) < 1 implies µ1(t

′) ≤ θ (consult 5). In turn, µ1(t
′) ≤ θ implies fA(t′) > 0 (consult 1). Hence,

for t′ ∈ (t1, t2), we have fA(t
′) > 0. Recall t1 ≤ t < τM . Therefore, FA(·) is strictly increasing on

interval (t1,min{τM , t2}), which contradicts Claim 3. The argument for t > τP is similar.

Next, consider t ∈ [τM , τP ], and suppose a(t) < 1. From Lemma 6, an interval (t1, t2) ⊂ [τM , τP ]

exists such that a(t) < 1 for t ∈ (t1, t2). Furthermore, a(t) < 1 ⇒ µ1(t) = θ for t ∈ (t1, t2) (see
5). It follows that for t1 < t′′ < t′ < t2 we have

uP (t
′)− uP (t

′′) =

" t′

t′′
exp(−ρs){wP

0 (s)θ + wP
1 (s)θ}ds+

exp(−ρt′)W P
φ (t′)θ − exp(−ρ(t′′)W P

φ (t′′)θ ≤

exp(−ρt′)

" t′

t′′
{wP

0 (s)θ + wP
1 (s)θ}ds+ exp(−ρt′)W P

φ (t′)θ − exp(−ρ(t′′)W P
φ (t′′)θ =

exp(−ρt′)(W P
φ (t′′)−W P

φ (t′))θ + exp(−ρt′)W P
φ (t′)θ − exp(−ρt′′)W P

φ (t′′)θ =

−(exp(−ρt′′)− exp(−ρt′))W P
φ (t′′)θ < 0,

where the last inequality uses t′′ < t′ and W P
φ (·) > 0. It immediately follows for all such t′, we

must have fP (t
′) = 0, contradicting Claim 4.

Claim 6. The agent’s strategy has no mass points.

Proof of Claim 6. Suppose the agent’s strategy has a mass point at t ∈ [τM , τP ]. Because
distribution of the arrival time of real news has no mass points, an arrival of type-1 news at t
has no effect on the principal’s about the payoff of the risky arm, i.e. µ1(t) = µ. It follows that
a(t) = 0, which contradicts Claim 5.

Claim 7. The principal’s stopping strategy has no mass points for t ∈ [τM , τP ).
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Proof of Claim 7. Consider τM ≤ t < t′ < τP . From Lemma 5, we have

uA(t
′)− uA(t) ≤

(1− FP (t)){v(t′)− v(t)}+ exp(−ρt′)WA
φ (t

′)(µ− β)a(t′)− exp(−ρt)WA
φ (t)(µ− β)a(t).

Because τM ≤ t < t′ < τP , using Claim 3 and condition (4) we have uA(t) = uA(t
′). From

Claim 5, we have a(t) = a(t′) = 1. Substituting, we have

(1− FP (t)){v(t′)− v(t)}+ exp(−ρt′)WA
φ (t

′)(µ− β)− exp(−ρt)WA
φ (t)(µ− β) ≥ 0 ⇒

WA
φ (t

′) ≥ exp(ρ(t′ − t))WA
φ (t)− exp(ρt′)(1− FP (t))

v(t′)− v(t)

µ− β

1− FP (t
′) ≥ (1− FP (t)){exp(ρ(t′ − t))

1−G(t)

1−G(t′)$ %& '
A

− exp(ρt′)
v(t′)− v(t)

µ− β$ %& '
B

}.

Consider the limit of both sides as t′ → t+. Because FP (·) is right-continuous, the limit on
the left hand side exists. Next, note that as t′ → t+ the limit of term A is 1, and the limit of
term B is 0, which follows from the continuity of function v(·). Therefore, the limit of the
right hand side exists, and is equal to 1 − FP (t). Combining these observations, we have
limt′→t+(1−FP (t

′)) ≥ 1−FP (t). Simplifying, we have limt′→t+ FP (t
′) ≤ FP (t). Because FP (·) is

increasing, we also have limt′→t+ FP (t
′) ≥ FP (t). Therefore limt′→t+ FP (t

′) = FP (t). Thus, FP (·)
is continuous at t.

6.4. Proof of Proposition 2 and Corollary 1

Corollary 2 is proved in the Supplemental Appendix.

Proof of Proposition 2. I first show that the distributions presented in the proposition are the
only ones that could constitute an equilibrium with beneficial search. That is, if an equilibrium
with beneficial search exists, then it must take the form presented in the statement of the
proposition. I then show that these distributions, together with a(·) = 1, are an equilibrium.

Step 1. If an equilibrium with beneficial search exists, then the distributions must be the ones
from the statement Proposition 2.

Principal Strategy. From Proposition 1, the support of the principal’s mixed strategy is [τM , τP ]

for some τM > 0. It follows that the set of t such that fP (t) > 0 is dense in (τM , τP ). From
Lemma 3, uP (·) is continuous in equilibrium. From (6) uP (t) = u∗

P for all t such that fP (t) > 0.
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It follows that uP (t) = u∗
P for all t ∈ [τM , τP ], where u∗

P is the principal’s equilibrium payoff.
Furthermore, according to Proposition 1, a(·) = 1. Therefore, for all t ∈ [τM , τP ] we have

uP (t)− uP (τM) =

" t

τM

exp(−ρs){wP
0 (s)θ + wP

1 (s)µ1(s)}+ exp(−ρt)W P
φ (t)θ − exp(−ρτM)W P

φ (τM)θ

=

" t

τM

exp(−ρs){((1− µ)θ + µ)g(s)(1− σFA(s)) + µσfA(s)(1−G(s))}ds

+ exp(−ρt)(1−G(t))(1− σFA(t))θ − exp(−ρτM)(1−G(τM))θ = 0.

From Proposition 1 FA(·) has no mass points. It follows that FA(τM) = 0 and FA(·) is abso-
lutely continuous. By implication, for t ∈ (τM , τP ) we have

exp(−ρt)(1−G(t))(1− σFA(t))θ − exp(−ρτM)(1−G(τM)θ =

−
" t

τM

exp(−ρs){g(s)(1− σFA(s)) + σfA(s)(1−G(s)) + ρ(1−G(s))(1− σFA(s))}θds.

To see this, note that the integrand is equal to the derivative of exp(−ρt)(1−G(t))(1−σFA(t))θ

wherever the derivative exists, and the equality above follows from absolute continuity. Sub-
stituting the previous equality and simplifying,

" t

τM

exp(−ρs){µ(1− θ)g(s)(1− σFA(s)) + (µ− θ)σfA(s)(1−G(s))− ρθ(1− σFA(s))(1−G(s))}ds =
" t

τM

exp(−ρs)(1− σFA(s))(1−G(s))(θ − µ){µ(1− θ)HR(s)− ρθ

θ − µ
−HA(s)}ds = 0,

where HA(s) ≡ σfA(s)/(1 − σFA(s)). Because the first four terms in the integrand are strictly
positive and the equation holds for all t ∈ (τM , τP ), we have

" t

τM

{µ(1− θ)HR(s)− ρθ

θ − µ
−HA(s)}ds = 0.

Note that ln(1−σFA(t)) is absolutely continuous on [τM , τP ] and its derivative is −HA(t) (wher-
ever FA(·) is differentiable). By implication

ln(1− σFA(t))− ln(1− σFA(τM)) = −
" t

τM

µ(1− θ)HR(s)− ρθ

θ − µ
ds.

Recall that FA(·) has no mass points, and the bottom of the support is τM . It follows that
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FA(τM) = 0, and hence

FA(t) =
1

σ
(1− exp{−

" t

τM

µ(1− θ)HR(s)− ρθ

θ − µ
ds}).

Determining τM . From Proposition 1, in an equilibrium with valuable search (i) the agent’s
strategy has no atoms and (ii), the the top of the support is τP . It follows that

1

σ
(1− exp{−

" τP

τM

µ(1− θ)HR(s)− ρθ

θ − µ
ds}) = 1 ⇔ 1− exp{−

" τP

τM

µ(1− θ)HR(s)− ρθ

θ − µ
ds} = σ.

Next, note that the LHS is a strictly decreasing function of τM and its value is 0 at τM = τP .
Therefore, the previous equation is satisfied by at most one τM . Furthermore, from Proposi-
tion 1, in a beneficial search equilibrium τM > 0. Such a solution exists if and only if

exp{−
" τP

0

µ(1− θ)HR(s)− ρθ

µ− θ
ds} < 1− σ ⇔ σ < σ.

Agent Strategy. As a preliminary step, I show that uA(·) is continuous on [τM , τP ). Consider
t′′ ≤ t′ < τP . From Proposition 1, we have that a(·) = 1. Therefore, for such t′′, t′ we have

uA(t
′)− uA(t

′′) =

" t′

t′′
exp(−ρs){(wA

0 (s) + wA
S (s))β + wA

1 (s)}ds

+exp(−ρt′)WA
φ (t

′)µ− exp(−ρt)WA
φ (t)µ.

Furthermore, according to Proposition 1, FP (·) has no atoms in [τM , τP ). Therefore, wA
0 (·),wA

1 (·),
wA

S (·), WA
φ (·) are all continuous. Therefore uA(·) is continuous on [τM , τP ).

From Proposition, the support of the agent’s mixed strategy is [τM , τP ]; that is, the set of t such
that fA(t) > 0 is dense in (τM , τP ). As shown above uA(·) is continuous on [τM , τP ). From
(6) uA(t) = u∗

A for all t such that fA(t) > 0. It follows that uA(t) = u∗
A for all t ∈ [τM , τP ),

where u∗
A is the agent’s equilibrium payoff. Furthermore, Proposition 1, a(t) = 1 for all t. By

implication, for τM < t < τP we have

uA(t)− uA(τM) =
" τM

t

exp(−ρs)(wA
0 (s) + wA

S (s))β + wA
1 (s)ds+ exp(−ρt)WA

φ (t)µ− exp(−ρτM)WA
φ (τM)µ

" τM

t

exp(−ρs){(µ+ (1− µ)β)g(s)(1− FP (s)) + fP (s)(1−G(s))β}ds+
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exp(−ρt)(1−G(t))(1− FP (t))µ− exp(−ρτM)(1−G(τM))µ = 0.

Because FP (·) has no mass points in [τM , τP ), (1) FP (τM) = 0, and (2) FP (·) is absolutely
continuous on this interval. By implication, for t ∈ [τM , τP ) we have

exp(−ρt)(1−G(t))(1− FP (t))µ− exp(−ρτM)(1−G(τM))µ =

−
" τM

t

exp(−ρs){g(s)(1− FP (s)) + fP (s)(1−G(s)) + ρ(1−G(s))(1− FP (s))}µds.

To see this, note that the integrand is equal to the derivative of exp(−ρt)(1−G(t))(1−FP (t))µ

wherever the derivative exists, and the equality above follows from absolute continuity.

Combining and simplifying, we have

" t

τM

exp(−ρs){β(1− µ)g(s)(1− FP (s))− fP (s)(1−G(s))(µ− β)− ρµ(1−G(s))(1− FP (s))}ds =
" t

τM

exp(−ρs)(1−G(s))(1− FP (s))(µ− β){β(1− µ)HR(s)− ρµ

µ− β
−HP (s)}ds = 0.

Where HP (s) ≡ fA(s)/(1 − FA(s)). Because the first four terms in the integrand are strictly
positive and the equation holds for all t ∈ (τM , τP ), we have

" t

τM

β(1− µ)HR(s)− ρµ

µ− β
−HP (s)ds = 0.

Note that ln(1−FP (t)) is absolutely continuous on [τM , τP ) and its derivative is −HP (t) (wher-
ever FA(·) is differentiable). By implication

ln(1− FP (t))− ln(1− FP (τM)) = −
" t

τM

β(1− µ)HR(s)− ρµ

µ− β
ds.

Recall that FP (·) has no mass points on [τM , τP ), and the bottom of the support is τM . It follows
that FP (τM) = 0, and hence

FP (t) = 1− exp{−
" t

τM

β(1− µ)HR(s)− ρµ

µ− β
ds},

for t ∈ [τM , τP ). Proposition 1 requires that the support of the principal’s mixed strategy is
[τM , τP ], and a mass point on τP is allowed. In particular, because FP (·) has a mass point at
τP , agent’s payoff uA(·) has a downward jump at τP . It it is straightforward to verify that
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fA(τP ) = 0, and therefore the agent’s strategy does not violate (4).

Sufficiency. The preceding calculations establish indifference for the principal in [τM , τP ] and
for the agent in [τM , τP ). To establish sufficiency, it remains to show (1) the proposed distri-
butions are valid CDFs, (2) for t at which fi(t) = 0, each player’s payoff does not exceed u∗

i ,
and (3) under the proposed distribution for FA(·), we have a(·) = 1 in equilibrium. (1) follows
from elementary calculations. (2) is immediate. (3) is proved as part of Corollary 1, below.

Proof of Corollary 1. Any type-1 arrival at time t /∈ [τM , τP ] reveals ω = 1, because the likeli-
hood of a fake is 0. Consider times t ∈ [τM , τP ]. At such a time, the principal’s posterior belief
is given by (1),

µ1(t) =
µg(t)(1− σFA(t) + µσfA(t)(1−G(t))

µg(t)(1− σFA(t)) + σfA(t)(1−G(t))
=

µ[HR(t) +HA(t)]

µHR(t) +HA(t)
,

where HA(t) ≡ σfA(t)/(1− σFA(t)). Using Proposition 2, it is straightforward to show that in
an equilibrium with beneficial search,

HA(t) =
µ(1− θ)HR(s)− ρθ

θ − µ
.

Routine simplification yields the expression in the proposition. Direct substitution establishes
continuity at τP . That the belief is increasing follows from the assumption that HR(·) is de-
creasing. Finally, it must be demonstrated that an ε > 0 exists such that µ1(t) ≥ θ + ε for
t ∈ [τM , τP ]. Note that HR(t) ≥ ρθ/(µ(1− θ)) for t ∈ [τM , τP ], and hence,

HR(t)µ(1− µ)− ρθ ≥ ρθ(
1− µ

1− θ
− 1) > 0.

Let

ε ≡ (θ − µ)
ρθ

HR(τM)µ(1− µ)− ρθ
.

As shown above, ε > 0. Furthermore, for t ∈ [τM , τP ], we have µ1(t) > µ1(τM) = θ + ε.

6.5. Proof of Proposition 3

As argued in the text, an equilibrium in which the principal does not benefit from search exists
if and only if there exists an agent faking strategy FA(·), such that uP (t) ≤ θ for all t ≥ 0, with
a(·) chosen optimally (as in (5)). That is such an equilibrium exists if and only if there exists
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FA(·), such that

uP (t) =

" t

0

exp(−ρs){wP
0 (s)θ + wP

1 (s)((1− a(s))θ + a(s)µ1(s))}ds (7)

+ exp(−ρt)W P
φ (t))θ ≤ θ,

for all t ≥ 0, where a(t) = I(µ1(t) ≥ θ).

First, note that attention can be restricted to t ≤ τP .

Step 1. An equilibrium without beneficial search exists if and only if there exists a faking strategy
FA(·) such that uP (t) ≤ θ for t ∈ [0, τP ], with a(·) chosen optimally. The necessary and sufficient
condition (7) must hold for all t ≥ 0, and therefore must hold for t ∈ [0, τP ]. The proposed
condition is therefore necessary. To see that it is sufficient, Recall Lemma 2 (ii), which estab-
lishes that if (5), then u(t) < u(τP ) for t > τP . Therefore, if u(τP ) ≤ θ, then for t > τP we have
u(t) < u(τP ) ≤ θ.

Step 2. An equilibrium without beneficial search exists only if σ > 1− θ
uFB
P (τP )

. Note that constrain-
ing the principal to select a(·) = 1, weakly reduces her payoff, i.e.,

uP (t) ≥
" t

0

exp(−ρs){wP
0 (s)θ + wP

1 (s)µ1(s)}ds+ exp(−ρt)W P
φ (t))θ.

Substituting into the right hand side, we have

uP (t) ≥
" t

0

exp(−ρs){((1− µ)θ + µ)g(s)(1− σFA(s)) + µσfA(s)(1−G(s))}ds

+ exp(−ρt)(1−G(t))(1− σFA(t))θ

≥(1− σ){
" t

0

exp(−ρs)((1− µ)θ + µ)g(s) + exp(−ρt)(1−G(t))θ} = (1− σ)uFB
P (t).

If an equilibrium without beneficial search exists, then

θ ≥ uP (t) ≥ (1− σ)uFB
P (t)

for all t ∈ [0, τP ]. From Lemma 1, the RHS is largest at τP and uFB
P (τP ) > θ. Therefore, such an

equilibrium exists only if θ ≥ (1− σ)uFB
P (τP ). Step 2 follows by rearranging.

Step 3. If an equilibrium without beneficial search exists at σ, then an equilibrium without beneficial
search exists for all σ′ > σ. Suppose that an equilibrium without beneficial search exists at σ,
i.e, there exists some FA(·) such that uP (t) ≤ θ for t ∈ [0, τP ]. Suppose σ′ > σ. Consider
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an alternative faking strategy /FA(t) = σ
σ′FA(t) if t ≤ τP and /FA(t) = FA(τP ) for t ≥ τP .

That is, in the interval [0, τP ], the alternative strategy is the original strategy scaled down by
factor σ/σ′ < 1, and any remaining mass is allocated to t = ∞. Note that this is a valid
strategy. Next, note that for t ≤ τP , we have σ′/FA(t) = σFA(t) and thus, σ′/fA(t) = σfA(t). By
implication µ1(t), wP

0 (t), wP
1 (t), W P

φ (t) are identical for the original strategy at σ, and for the
alternative strategy at σ′. Thus, the principal’s payoff functions are also identical, and weakly
bounded by θ.

Step 4. An equilibrium without beneficial search exists if σ > σ. Consider continuous faking
strategy

FA(t) =
1

σ

,
1− exp{−

" t

0

µ(1− θ)HR(s)− ρθ

θ − µ
ds}

-
,

supported on [0, τX ]. It is readily verified that the proposed CDF is increasing and that for
σ > σ, the proposed CDF attains 1 at some τX > τP . Furthermore, it is straightforward
to show that uP (t) = θ, for all t ≤ τX . Thus, the proposed agent strategy, coupled with
immediate stopping constitute an equilibrium without beneficial search.

Step 4 tells us that the set of σ at which an equilibrium without beneficial search exists is an
interval, [σ, 1]. Step 2 tells us that σ < 1. Step 4 tells us that σ ≤ σ.

6.6. Proofs for Section 4

Proof of Proposition 4. Step 1. Commitment to naive search delivers principal a higher payoff than
the unique equilibrium if σ < σ. If σ < σ, then the unique equilibrium without commitment has
beneficial search. Consider the payoff difference as a function of σ,

∆(σ) = uN
P (σ)− uFB

P (τM(σ)).

Note that for σ = 0, we have uN
P (0) = uFB

P (τM(0)) = uFB
P (τP ). Thus, ∆(0) = 0. Furthermore,

duN
P (σ)

dσ
= − exp(−ρτP )(1−G(τP ))(θ − µ).

Moreover,

duFB
P (τM(σ))

dσ
=

duFB
P (τM)

dτM

dτM
dσ

.

42



From proof of Lemma 1, we have

duFB
P (τM)

dτM
= exp(−ρτM)(1−G(τM))µ(1− θ){HR(τM)− ρθ

µ(1− θ)
}.

From Proposition 2, we have the following implicit function relating τM and σ.

exp{−
" τP

τM

µ(1− θ)HR(s)− ρθ

θ − µ
ds} = 1− σ.

Differentiating, with respect to σ, we have

dτM
dσ

{µ(1− θ)HR(τM)− ρθ

θ − µ
} exp{−

" τP

τM

µ(1− θ)HR(s)− ρθ

θ − µ
} = −1.

Simplifying, we have

dτM
dσ

{µ(1− θ)HR(τM)− ρθ

θ − µ
}(1− σ) = −1 ⇒

dτM
dσ

= {µ(1− θ)HR(τM)− ρθ

θ − µ
}(1− σ) = −θ − µ

1− σ

1

µ(1− θ)(HR(τM)− ρθ
µ(1−θ)

)
.

Combining these expressions,

duFB
P (τM(σ))

dσ
=

,
exp(−ρτM)(1−G(τM))µ(1− θ){HR(τM)− ρθ

µ(1− θ)
}
-,

− θ − µ

1− σ

1

µ(1− θ)(HR(τM)− ρθ
µ(1−θ)

)

-
=

− θ − µ

1− σ
exp(−ρτM)(1−G(τM)).

It follows that

d∆

dσ
= − exp(−ρτP )(1−G(τP ))(θ − µ) +

θ − µ

1− σ
exp(−ρτM)(1−G(τM)).

Recalling that (1) τM < τP , (2) exp(−ρ·)(1−G(·)) is a strictly decreasing function, we have

d∆

dσ
> (θ − µ) exp(−ρτM)(1−G(τM))(

1

1− σ
− 1) > 0.

Hence, ∆(0) = 0 and ∆(·) is increasing in σ for σ < σ. Therefore for all σ ∈ (0, σ], we have
∆(σ) > 0.
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Step 2. A .σ ≤ 1 exists such that commitment to naive search delivers principal a higher payoff than
any equilibrium without commitment if σ < σ < .σ. Without commitment, the principal’s payoff
in any equilibrium is uFB

P (0) = θ for σ > σ. Thus,

∆(σ) = uN
P (σ)− θ.

Note that ∆(·) is continuous at σ, because τM(σ) → 0 as σ → σ−, and uFB
P (0) = θ. It follows

from Step 1 that ∆(σ) > θ. Furthermore, ∆(σ) is linear for σ > σ. The result follows.

Proof of Proposition 6. To prove the first claim of the proposition it is sufficient to show that
U ′(θ|θ) < 0, where U ′(·|θ) is the derivative of U(·|·) with respect to θI . In this case, the
principal’s payoff of delegating U(θI |θ) is decreasing in θI at θI = θ. Thus, for an interval
of θI just below θ, we have U(θI |θ) > U(θ|θ).

To simplify the notation of the proof, let uFB
t (·) ≡ duFB

P (t)/dt and u′
I(t|θI , θ) = ∂2uP (t|θI , θ)/∂t∂θI ,

i.e., the derivative of u′
P (t|θI , θ) with respect to θI .

Step 1. Recover the expression in the text.

U(θI |θ) =
" τP (θI)

τM (θI)

fP (s|θI)uP (s|θI , θ)ds+ (1− FP (τ
−
P (θI)|θI))uP (τP (θI)|θI , θ)

Note that fP (·|θI) is continuous, and uP (·|θI , θ) is continuous and differentiable on [τM(θI), τP (θI)].
Integrating by parts, we have

= −
" τP (θI)

τM (θI)

uP (s|θI , θ)d[1− FP (s|θI)] + (1− FP (τ
−
P (θI)|θI))uP (τP (θI)|θI , θ)

= (1− FP (τM(θI))|θI)u(τM(θI)|θI)− (1− FP (τ
−
P (θI)|θI))uP (τP (θI)|θI , θ)

+

" τP (θI)

τM (θI)

(1− FP (s|θI))u′
P (s|θI , θ)ds+ (1− FP (τ

−
P (θI)|θI))uP (τP (θI)|θI , θ)

=

" τP (θI)

τM (θI)

(1− FP (s|θI))u′
P (s|θI , θ)ds+ (1− FP (τM(θI)|θI)uP (τM(θI)|θI).

From Proposition 2, we have (1− FP (τM(θI)|θI) = 1 and uP (τM(θI)|θI) = uFB
P (τM(θI)).

Step 2. Differentiate U(θI |θ) with respect to θI .

U ′(θI |θ) = (1− FP (τ
−
P (θI)|θI))u′

P (τ
−
P (θI)|θI , θ)τ ′P (θI)− (1− FP (τM(θI)|θI))u′

P (τM(θI)|θI , θ)τ ′M(θI)

+

" τP (θI)

τM (θI)

(1− FP (s|θI))u′
I(s|θI , θ))−

dFP (s|θI)
dθI

u′
P (s|θI , θ)ds+ uFB

t (τM(θI))τ
′
M(θI).

44



Step 3. Evaluate at θI = θ.

Note that at θI = θ, we have u′
P (·|θ, θ) = 0 on [τM , τP ]. That is, the principal’s equilibrium

payoff is constant inside the support, and furthermore, all equilibrium objects are continuous
in θI . Therefore,

U ′(θ|θ) =
" τP

τM

(1− FP (s))u
′
I(s|θ, θ)ds+ uFB

t (τM)τ ′M(θ).

Step 4. Derive an expression for u′
I(s|θ, θ).

Substituting the definitions in the text,

uP (t|θI , θ) = uP (τM(θI)|θI , θ)

+

" t

τM (θI)

exp(−ρs){((1− µ)θ + µ)g(s)(1− σFA(s|θI)) + µσfA(s|θI)(1−G(s))}ds

+ exp(−ρt)(1−G(t))(1− σFA(t|θI))θ − exp(−ρτM(θI))(1−G(τM(θI))θ.

From Proposition 2 FA(·) has no mass points. It follows that FA(τM) = 0 and FA(·) is abso-
lutely continuous. By implication, for t ∈ (τM(θI), τP (θI)) we have

exp(−ρt)(1−G(t))(1− σFA(t|θI))θ − exp(−ρτM(θI))(1−G(τM(θI))θ =

−
" t

τM (θI)

exp(−ρs){g(s)(1− σFA(s|θI)) + σfA(s|θI))(1−G(s)) + ρ(1−G(s))(1− σFA(s|θI))}θds.

To see this, note that the integrand is equal to the derivative in t of exp(−ρt)(1 − G(t))(1 −
σFA(t|θI))θ wherever the derivative exists, and the equality above follows from absolute con-
tinuity. Substituting the previous equality and simplifying,

uP (t|θI , θ) = uP (τM(θI)|θI , θ)+
" t

τM (θI)

exp(−ρs){µ(1− θ)g(s)(1− σFA(s|θI)) + (µ− θ)σfA(s|θI)(1−G(s))

− ρθ(1− σFA(s||θI))(1−G(s))}ds =
" t

τMθI)

exp(−ρs)(1− σFA(s|θI))(1−G(s))(θ − µ){µ(1− θ)HR(s)− ρθ

θ − µ
−HA(s|θI)}ds,

where HA(s|θI) = σfA(s|θI)/(1 − σFA(s|θI)). From Proposition 2, it is readily verified that in
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equilibrium,

HA(s|θI) =
µ(1− θI)HR(s)− ρθI

θI − µ
.

It is also helpful to denote the derivative of HA(s|θI) with respect to θI . Let

hA(s|θI) ≡
dHA(s|θI)

dθI
=

−(µHR(s) + ρ)(θI − µ)− µ(1− θI)HR(s) + ρθ

(θI − µ)2

=− µ(1− µ)

(θI − µ)2
(HR(s)−

ρ

1− µ
).

With this notation, we have

uP (t|θI , θ) = uP (τM(θI)|θI , θ)+
" t

τM (θI)

exp(−ρs)(1− σFA(s|θI))(1−G(s))(θ − µ){HA(s|θ)−HA(s|θI)}ds.

Differentiating with respect to t, we have

u′
P (t|θI , θ) = exp(−ρt)(1− σFA(t|θI))(1−G(t))(θ − µ){HA(t|θ)−HA(t|θI)}.

Differentiating with respect to θI and then evaluating at θI = θ, we have

u′
I(t|θ, θ) = − exp(−ρt)(1− σFA(t)(1−G(t))(θ − µ)hA(t|θ).

Note that the term involving differentiation of 1 − σFA(t|θI) vanishes at θI = θ, because
HA(t|θ)−HA(t|θ) = 0.

Step 5. Derive an expression for uFB
t (τM)τ ′M(θ).

Differentiating uFB
P (·) with respect to t and substituting τM gives

uFB
t (τM) =

duFB
P (τM)

dt
= exp(−ρτM)(1−G(τM))µ(1− θ){HR(τM)− ρθ

µ(1− θ)
}

= exp(−ρτM)(1−G(τM)){µ(1− θ)HR(τM)− ρθ}

= exp(−ρτM)(1−G(τM))(θ − µ)HA(τM |θ)

(see also the proof of Lemma 1).
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To find τ ′M(θ) recall that, Proposition 2 gives an implicit function relating τM , τP , and σ,

exp{−
" τP

τM

µ(1− θ)HR(s)− ρθ

θ − µ
ds} = 1− σ ⇐⇒ exp{−

" τP

τM

HA(s|θ)ds} = 1− σ.

Differentiating with respect to θ, we have

exp{−
" τP

τM

HA(s|θ)ds}
,
HA(τM |θ)τ ′M(θ)−HA(τP |θ)τ ′P (θ)−

" τP (θ)

τM (θ)

hA(s|θ)ds
-
= 0.

Note that HR(τP ) = ρθ/(µ(1− θ)), which implies HA(τP |θ) = 0. By implication

HA(τM |θ)τ ′M(θ)−
" τP

τM

hA(s|θ)ds = 0 ⇒ τ ′M(θ) =

0 τP
τM

hA(s|θ)ds
HA(τM |θ) .

Combining these calculations, we have

uFB
t (τM)τ ′M(θ) = exp(−ρτM)(1−G(τM))(θ − µ).

" τP

τM

hA(s|θ)ds.

Step 6. Show that U ′(θ|θ) < 0.

From Step 3,

U ′(θ|θ) =
" τP

τM

(1− FP (s))u
′
I(s|θ, θ)ds+ uFB

t (τM)τ ′M(θ).

Substituting the expressions derived in Steps 4 and 5, we have

U ′(θ|θ) = −
" τP

τM

exp(−ρs)(1− σFA(s)(1−G(s))(θ − µ)(1− FP (s))hA(s|θ)ds+

exp(−ρτM)(1−G(τM))(θ − µ).

" τP

τM

hA(s|θ)ds.

Let Q(s) ≡ exp(−ρs)(1− σFA(s))(1−G(s))(1− FP (s))(θ − µ). Note that Q(s) > 0 for all s ≥ 0

and Q(s) is strictly decreasing. With this notation,

U ′(θ|θ) =
" τP

τM

{Q(τM)−Q(s)}hA(s|θ)ds.

Because Q(·) is strictly decreasing, the term in curly braces is strictly positive. To complete
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the proof, it suffices to show that hA(s|θ) < 0 for s ∈ [τM , τP ]. As shown in Step 4,

hA(s|θ) = −µ(1− µ)

(θ − µ)2
(HR(s)−

ρ

1− µ
).

For s ≤ τP , we have HR(s) ≥ ρθ
µ(1−θ)

. Hence, for such s,

hA(s|θ) ≤ −µ(1− µ)

(θ − µ)2
(

ρθ

µ(1− θ)
− ρ

1− µ
) = −ρθ(1− µ)− ρµ(1− θ)

(θ − µ)2(1− θ)
= − ρ

(θ − µ)(1− θ)
< 0.

This completes the proof of the first claim.

To prove the second claim, suppose that the principal has delegated to an intermediary with
θI < θ. It will be established that if θI sufficiently close to θ, then the principal does not want to
overrule the agent’s chosen action following a news arrival. Obviously, type-0 news reveals
ω = 0 and both principal and intermediary prefer the safe action in this case. Recall from
Proposition 2 that in equilibrium the intermediary selects the risky action with probability 1
following type-1 news at all times [0, τP (θI)]. Type-1 news arrivals before τM(θI) are real with
probability 1, and both principal and intermediary prefer the risky action for such arrivals.
What remains is to show that the principal prefers the risky action following type-1 news
arrivals that occur in [τM(θI), τP (θI)]. Given an arrival at such a time, the principal’s posterior
belief is given by (1),

µ1(s|θI) =
µg(s)(1− σFA(s|θI)) + µσfA(s|θI)(1−G(s))

µg(s)(1− σFA(s|θI)) + σfA(s|θI)(1−G(s))
=

µ[HR(s) +HA(s|θI)]
µHR(s) +HA(s|θI)

.

Thus, the principal strictly prefers the risky action following a type-1 news arrival if

µ[HR(s) +HA(s|θI)]
µHR(s) +HA(s|θI)

> θ ⇐⇒ HA(s|θI) <
µ(1− θ)HR(s)

θ − µ
.

It is readily verified that in the equilibrium of Proposition 2,

HA(s|θI) =
µ(1− θI)HR(s)− ρθI

θI − µ
.

Thus, the principal strictly prefers risky following a type-1 news arrival if

µ(1− θI)HR(s)− ρθI
θI − µ

<
µ(1− θ)HR(s)

θ − µ
.

Obviously, for θI = θ, left hand side is strictly smaller. Because left hand side is continuous,
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this inequality holds if θI and θ are close.

7. Supplemental Appendix

7.1. Proof of Lemmas used in Proposition 1

Observation 1. Note that
" t

0

wP
0 (s) + wP

1 (s)ds+W P
φ (t) = 1.

Indeed, the integral is the probability that a type-0 or type-1 arrival occurs at times less than
or equal to t, while W P

φ (t) is the probability that an arrival of news takes longer than t. Rear-
ranging, for t1 ≤ t2 we have

" t2

t1

wP
0 (s) + wP

1 (s)ds = W P
φ (t1)−W P

φ (t2).

Similarly, for the agent we have,

" t2

t1

wA
0 (s) + wA

1 (s) + wA
S (s)ds = WA

φ (t1)−WA
φ (t2).

Proof of Lemma 2. Proof of Parts (i) and (ii): By definition,

uP (t
′)− uP (t) =

" t′

t

exp(−ρs)(wP
0 (s)θ + wP

1 (s)(θ + a(s)(µ1(s)− θ))ds+ exp(−ρt′)W P
φ (t′)θ − exp(−ρt)W P

φ (t)θ.

Step 1: Derive a bound on the second term of the integrand.

wP
1 (s)(θ + a(s)(µ1(s)− θ)) = wP

1 (s)θ(1− a(s)) + wP
1 (s)µ1(s)a(s) =

(µg(s)(1− σFA(s)) + σfA(s)(1−G(s))$ %& '
wP

1 (s)

θ(1− a(s)) + (µg(s)(1− σFA(s)) + µσfA(s)(1−G(s)))$ %& '
wP

1 (s)µ1(s)

a(s).

Combining terms, we have

wP
1 (s)(θ + a(s)(µ1(s)− θ)) =

µg(s)(1− σFA(s))(θ(1− a(s)) + a(s)) + σfA(s)(1−G(s))(θ(1− a(s)) + a(s)µ).
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Recall that µ < θ < 1, and hence,

wP
1 (s)(θ + a(s)(µ1(s)− θ)) ≤ µg(s)(1− σFA(s)) + σfA(s)(1−G(s))θ. (8)

Step 2: Apply the bound derived in Step 1.

Recall that wP
0 (s) = (1− µ)g(s)(1− σFA(s). Using this and (8), we have

uP (t
′)− uP (t) ≤

" t′

t

exp(−ρs){((1− µ)θ + µ)g(s)(1− σFA(s)) + σfA(s)(1−G(s))θ}ds+ (9)

exp(−ρt′)(1−G(t′))(1− σFA(t
′))θ − exp(−ρt)(1−G(t))(1− σFA(t))θ.

Step 3: Derive an alternative expression for the RHS of inequality (9).

Consider the following integral,

" ∞

t

σfA(s)min{uFB
P (s)− uFB

P (t), uFB
P (t′)− uFB

P (t)}ds =
" t′

t

σfA(s)(u
FB
P (s)− uFB

P (t))ds

$ %& '
A

+(1− σFA(t
′))(uFB

P (t′)− uFB
P (t))$ %& '

B

.

Focus on term A. Substituting, we have

" t′

t

σfA(s)[

" s

t

exp(−ρx)g(x)(µ+ (1− µ)θ)dx+ exp(−ρs)(1−G(s)θ − exp(−ρt)(1−G(t))θ]ds =

" t′

t

" s

t

σfA(s){exp(−ρx)g(x)(µ+ (1− µ)θ)dxds+

" t′

t

σfA(s) exp(−ρs)(1−G(s))θ}ds

− σ(FA(t
′)− FA(t))(exp(−ρt)(1−G(t))).

Reversing the order of integration of the double integral, we have

" t′

t

σ(FA(t
′)− FA(s)) exp(−ρs)g(s)(µ+ (1− µ)θ) + σfA(s) exp(−ρs)(1−G(s))θds

−σ(FA(t
′)− FA(t))(exp(−ρt)(1−G(t))).

Now consider term B. We have

(1− σFA(t
′)){uFB

P (t′)− uFB
P (t)} =
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(1− σFA(t
′)){

" t′

t

exp(−ρs)g(s)(µ+ (1− µ)θ))ds+ exp(−ρt′)(1−G(t′))θ − exp(−ρt)(1−G(t))θ}.

Adding terms A and B we have,

" t′

t

(1− σFA(s)) exp(−ρs)g(s)(µ+ (1− µ)θ) + σfA(s) exp(−ρs)(1−G(s))θds

+(1− σFA(t
′)) exp(−ρt′)(1−G(t))(1− σFA(t)) exp(−ρt)(1−G(t)),

which is the RHS of inequality (9). Therefore, inequality (9) can be written

uP (t
′)− uP (t) ≤

" ∞

t

σfA(s)min{uFB
P (s)− uFB

P (t), uFB
P (t′)− uFB

P (t)}ds. (10)

Proof of (i). Notice that

min{uFB
P (s)− uFB

P (t), uFB
P (t′)− uFB

P (t)} ≤ uFB
P (t′)− uFB

P (t).

Substituting into (10), we have

uP (t
′)− uP (t) ≤

" ∞

t

σfA(s)(u
FB
P (t′)− uFB

P (t))ds = (1− σFA(t))(u
FB
P (t′)− uFB

P (t)). (11)

Proof of (ii). Suppose t > τP . Applying inequality (11), we have,

uP (t)− uP (τP ) ≤ (1− σFA(τP ))(u
FB
P (t)− uFB

P (τP )).

From Lemma 1 we have that the single peak of uFB(·) is at τP . By implication, the right hand
side is strictly negative for all τP < t < ∞. Furthermore, the right hand side is also strictly
decreasing in t, and hence limt→∞ uFB

P (t)− uFB
P (τP ) < 0.

Proof of (iii). By definition,

uP (t
′)− uP (t) =

" t′

t

exp(−ρs)(wP
0 (s)θ + wP

1 (s)(θ + a(s)(µ1(s)− θ))ds+ exp(−ρt′)W P
φ (t′)θ − exp(−ρt)W P

φ (t)θ.

Given (5), we have θ + a(s)(µ1(s)− θ) ≥ θ, and hence,

uP (t
′)− uP (t) ≥ θ

" t′

t

exp(−ρs)(wP
0 (s) + wP

1 (s))ds+ exp(−ρt′)W P
φ (t′)θ − exp(−ρt)W P

φ (t)θ ≥
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exp(−ρt′)θ

" t′

t

(wP
0 (s) + wP

1 (s))ds+ exp(−ρt′)W P
φ (t′)θ − exp(−ρt)W P

φ (t)θ.

Using Observation 1, we have

uP (t
′)− uP (t) ≥ exp(−ρt′)θ(W P

φ (t)−W P
φ (t′)) + exp(−ρt′)W P

φ (t′)θ − exp(−ρt)W P
φ (t)θ =

−[exp(−ρt)− exp(−ρt′)]W P
φ (t)θ.

Proof of (iv). If FA(t) = FA(t
′), then fA(s) = 0 for almost all s ∈ (t, t′). It follows that for almost

all s ∈ (t, t′), µ1(s) = 1, a(s) = 1 (from (5)), wP
0 (s) = (1− µ)g(s)(1− σFA(t)), wP

1 (s) = µg(s)(1−
σFA(t)). Furthermore, W P

φ (t) = (1 − G(t))(1 − σFA(t)) and W P
φ (t′) = (1 − G(t′))(1 − σFA(t)).

The result follows from routine substitution.

Proof of Lemma 3. Using Parts (i) and (iii) of Lemma 2, for t′ > t

−(exp(−ρt)− (exp(−ρt′))W P
φ (t)θ ≤ uP (t

′)− uP (t) ≤ (1− σFA(t)){uFB
P (t′)− uFB

P (t)}.

By continuity of uFB
P (·) and exp(·), we have limt′→t+ uP (t

′) = uP (t). Similarly, for t′ < t

−(exp(−ρt′)− (exp(−ρt))W P
φ (t′)θ ≤ uP (t)− uP (t

′) ≤ (1− σFA(t
′)){uFB

P (t)− uFB
P (t′)},

Note that (1) W P
φ (t′) ≤ W P

φ (t), (2) (exp(−ρt′) − (exp(−ρt)) > 0, and (3) FA(t
′) ≥ 0. It follows

that

−(exp(−ρt′)− (exp(−ρt))W P
φ (t)θ ≤ uP (t)− uP (t

′) ≤ uFB
P (t)− uFB

P (t′).

Continuity of uFB(·) and exp(·) imply limt′→t− uP (t
′) = uP (t).

Proof of Lemma 4. From Lemma 2, we have uP (t) < uP (τP ) for τP < t ≤ ∞. From (6), we
have fP (t) = 0 for such t. By implication, FP (τP ) = 1.

Definition: Let

v(t) ≡
" t

0

exp(−ρx)g(x)(µ+ (1− µ)β)dx+ exp(−ρt)(1−G(t))β.

Proof of Lemma 5. Suppose t < t′ ≤ τP . By definition,

uA(t
′)− uA(t) =
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" t′

t

exp(−ρs){(wA
0 (s) + wA

S (s))β + wA
1 (s)((1− a(s))β + a(s))}ds+

exp(−ρt′)WA
φ (t

′)(µa(t′) + (1− a(t′))β)− exp(−ρt)WA
φ (t)(µa(t) + (1− a(t))β).

Proof of (i). First, rearrange the previous expression:

uA(t
′)− uA(t) =

" t′

t

exp(−ρs){(wA
0 (s) + wA

S (s))β + wA
1 (s)((1− a(s))β + a(s))}ds+ exp(−ρt′)WA

φ (t
′)β − exp(−ρt)WA

φ (t)β+

exp(−ρt′)WA
φ (t

′)(µ− β)a(t′))− exp(−ρt)WA
φ (t)(µ− β)a(t).

Because a(s) ≤ 1 and β < µ < 1,we have

uA(t
′)− uA(t) ≤ (12)

" t′

t

exp(−ρs){(wA
0 (s) + wA

S (s))β + wA
1 (s)}ds+ exp(−ρt′)WA

φ (t
′)β − exp(−ρt)WA

φ (t)β+

exp(−ρt′)WA
φ (t

′)(µ− β)a(t′)− exp(−ρt)WA
φ (t)(µ− β)a(t).

Step 1: Provide a different expression the first line of the RHS of (12).

The expression to be rewritten is

" t′

t

exp(−ρs){(wA
0 (s) + wA

S (s))β + wA
1 (s)}ds+ exp(−ρt′)WA

φ (t
′)β − exp(−ρt)WA

φ (t)β =

" t′

t

exp(−ρs){g(s)(1− FP (s))(µ+ (1− µ)β) + βfP (s)(1−G(s))}ds+ (13)

exp(−ρt′)(1− FP (t
′))(1−G(t′))β − exp(−ρt) exp(−ρt)(1− FP (t))(1−G(t))β.

For t ≤ τP , we have HR(t) ≥ φP > ρβ/(µ(1 − β)). Thus, for t ≤ τP , function v(·) is strictly
increasing.

Consider the integral

" ∞

t

fP (s)min{v(s)− v(t), v(t′)− v(t)}ds =
" ∞

t

fP (s){v(s)− v(t)}ds
$ %& '

A

+(1− FP (t
′))(v(t′)− v(t))

$ %& '
B

.

which follows because v(·) is increasing for t ≤ τP .
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First, consider term A.

" t′

t

fP (s){
" s

t

exp(−ρx)g(x)(µ+ (1− µ)β)dx+ exp(−ρs)(1−G(s))β − exp(−ρt)(1−G(t))β}ds,

which is equal to

" t′

t

" s

t

fP (s){exp(−ρx)g(x)(µ+ (1− µ)β)}dxds+
" t′

t

fP (s) exp(−ρs)(1−G(s))βds

− (FP (t
′)− FP (t))(exp(−ρt)(1−G(t))β.

Reversing the order of integration in the double integral, we have

" t′

t

" t′

x

fP (s) exp(−ρx)g(x)(µ+ (1− µ)β)dsdx+

" t′

t

fP (s) exp(−ρs)(1−G(s))βds

− (FP (t
′)− FP (t))(exp(−ρt)(1−G(t))β =

" t′

t

(FP (t
′)− FP (x)) exp(−ρx)g(x)(µ+ (1− µ)β)dx+

" t′

t

fP (s) exp(−ρs)(1−G(s))βds

− (FP (t
′)− FP (t))(exp(−ρt)(1−G(t))β.

Therefore, term A is

" t′

t

(FP (t
′)− FP (s)) exp(−ρs)g(s)(µ+ (1− µ)β) + fP (s) exp(−ρs)(1−G(s))βds

− (FP (t
′)− FP (t))(exp(−ρt)(1−G(t))β.

Next, consider term B:

(1− FP (t
′)){

" t′

t

exp(−ρs)g(s)(µ+ (1− µ)β)ds+ exp(−ρt′)(1−G(t′))β − exp(−ρt)(1−G(t))β}.

Adding terms A and B, we have

" t′

t

(1− FP (s)) exp(−ρs)g(s)(µ+ (1− µ)β)ds+ fP (s) exp(−ρs)(1−G(s))βds

+ (1− FP (t
′))(exp(−ρt′)(1−G(t′))β − (1− FP (t))(exp(−ρt)(1−G(t))β,

which is exactly the expression in (13).
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Proof of (i). Note first that by straightforward differentiation.

v′(t) > 0 ⇐⇒ HR(t) >
ρβ

µ(1− β)
.

Note that β < θ ⇒ ρβ
µ(1−β)

< φP . Therefore, v(·) is strictly increasing for t ≤ τP .

Using Step 1, we have,

uA(t
′)− uA(t) ≤" ∞

t

fP (s)min{v(s)− v(t), v(t′)− v(t)}ds+ exp(−ρt′)WA
φ (t

′)(µ− β)a(t′)− exp(−ρt)WA
φ (t)(µ− β)a(t) ≤

(1− FP (t))(v(t
′)− v(t)) + exp(−ρt′)WA

φ (t
′)(µ− β)a(t′)− exp(−ρt)WA

φ (t)(µ− β)a(t),

where use has been made of the observation min{v(s) − v(t), v(t′) − v(t)}} ≤ v(t′) − v(t),
completing the proof of (i).

Proof of (ii). Consider the expression for uA(t
′)− u(t); noting that β < 1 and a(t) ≥ 0, we have

uA(t
′)− uA(t) ≥ exp(−ρt′)β

" t′

t

{wA
0 (s) + wS

0 (s) + wA
1 (s)}ds+

exp(−ρt′)WA
φ (t

′)(µa(t′) + (1− a(t′))β)− exp(−ρt)WA
φ (t)(µa(t) + (1− a(t))β).

Using Observation 1, we have

uA(t
′)− uA(t) ≥ exp(−ρt′)(WA

φ (t)−WA
φ (t

′))β+

exp(−ρt′)WA
φ (t

′)(µa(t′) + (1− a(t′))β)− exp(−ρt)WA
φ (t)(µa(t) + (1− a(t))β).

Simplifying,

uA(t
′)− uA(t) ≥− (exp(−ρt)− exp(−ρt′))WA

φ (t)β + (exp(−ρt′)WA
φ (t

′)a(t′)− exp(−ρt)WA
φ (t)a(t))(µ− β)

Proof of (iii).

If FP (t) = FP (t
′), then fP (s) = 0 almost everywhere in (t, t′). This observation, together with

the other assumptions implies wA
0 (s) = (1 − µ)g(s)(1 − FP (t)), wA

1 (s) = µg(s)(1 − FP (t)),
wA

S (s) = 0, for almost all s ∈ (t, t′). Furthermore, WA
φ (t) = (1−G(t))(1− FP (t)) and WA

φ (t
′) =

(1−G(t′))(1− FP (t)). The result follows from routine substitution.

Remark 1. If fP (s) = 0 and a(s) = 1 for s ∈ [t, t′], then the Right hand side of the inequality
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in Lemma 5 reduces to (1− FP (t))(u
FB
A (t′)− uFB

A (t)). Thus, parts (i) and (iii) of Lemma 5 are
mutually consistent.

Proof of Lemma 6. Part (i). Note that a(t) < 1 ⇒ fA(t) > 0 (see 1). It follows from (4) that
uA(t

′)− uA(t) ≤ 0 for any t′ > t. From Lemma 5, we have

{exp(−ρt′)WA
φ (t

′)a(t′)− exp(−ρt)WA
φ (t)a(t)}(µ− β)− {exp(−ρt)− exp(−ρt′)}WA

φ (t)β ≤ uA(t
′)− uA(t).

Combining these inequalities, we have

{exp(−ρt′)WA
φ (t

′)a(t′)− exp(−ρt)WA
φ (t)a(t)}(µ− β)− {exp(−ρt)− exp(−ρt′)}WA

φ (t)β ≤ 0.

Simplifying, we have

exp(−ρt′)WA
φ (t

′)a(t′) ≤ exp(−ρt)WA
φ (t)a(t) +

{exp(−ρt)− exp(−ρt′)}WA
φ (t)β

µ− β
.

Because FP (t) < 1, for ε ∈ (0, ε) we have FP (t
′) < 1 for all t′ ∈ [t, t + ε). In other words,

WA
φ (t

′) > 0 for such t′. Therefore, we have

a(t′) ≤
exp(−ρt)WA

φ (t)

exp(−ρt′)WA
φ (t

′)
$ %& '

A

a(t) +
{exp(−ρt)− exp(−ρt′)}WA

φ (t)β

(µ− β) exp(−ρt′)WA
φ (t

′)
$ %& '

B

.

Because WA
φ (·) is right-continuous, A is arbitrarily close to 1 provided ε sufficiently small.

Simultaneously, B is arbitrarily close to 0. Because a(t) < 1, we have that the RHS is less than
1.

Part (ii). Note that a(t) < 1 ⇒ fA(t) > 0 (see 1). It follows from (4) that uA(t)− uA(t
′′) ≥ 0 for

any t′′ < t. From Lemma 5, we have

(1− FP (t
′′))(v(t)− v(t′′)) + exp(−ρt)WA

φ (t)(µ− β)a(t)− exp(−ρt′′)WA
φ (t

′′)(µ− β)a(t′′) ≥ uA(t)− uA(t
′′).

Combining these inequalities we have

(1− FP (t
′′))(v(t)− v(t′′)) + exp(−ρt)WA

φ (t)(µ− β)a(t)− exp(−ρt′′)WA
φ (t

′′)((µ− β)a(t′′)) ≥ 0.

Because t′′ < t, we have exp(−ρt′′)WA
φ (t

′′) ≥ exp(−ρt)WA
φ (t). Therefore,

(1− FP (t
′′))(v(t)− v(t′′)) + exp(−ρt′′)WA

φ (t
′′){(µ− β)a(t)}− exp(−ρt′′)WA

φ (t
′′)((µ− β)a(t′′)) ≥ 0.
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Furthermore, FP (t
′′) ≤ FP (t) < 1. Therefore,

(v(t)− v(t′′)) + exp(−ρt′′)(1−G(t′′))(µ− β)(a(t)− a(t′′)) ≥ 0.

Obviously, exp(−ρt′′)(1−G(t′′))(µ− β) > 0. It follows that

a(t′′) ≤ a(t) +
v(t)− v(t′′)

exp(−ρt′′)(1−G(t′′))(µ− β)
.

Because v(·) is continuous and a(t) < 1, for t′′ sufficiently close to t, RHS is smaller than 1.

Proof of Lemma 7. Part (i). Note that if FA(t1) = FA(t2), then FA(t1) = FA(t) = FA(t2) for all
t ∈ [t1, t2). In addition we have assumed (5). From Lemma 2 part (iv), we have uP (t2)−uP (t) =

(1− σFA(t1))(u
FB
P (t2)− uFB

P (t)). We have assumed t2 ≤ τP . From Lemma 1, uFB
P (t2) > uFB

P (t).
Therefore, uP (t2) > uP (t). From (6), we have fP (t) = 0.

Part (ii). In the proof of (i) we have shown that uP (t1) < uP (t2). From continuity of uP (·)
(Lemma 3), we have uP (t) < uP (t2) for all t ∈ [t1 − ε, t1), for sufficiently small ε > 0. From (6),
we have fP (t) = 0 for such t. Together with part (i) we have fP (t) = 0 for t ∈ [t1 − ε, t2).

Proof of Lemma 8. Consider TP = {t|FP (t) = FP (t2)}. Because FP (t2) < 1, FP (·) is weakly
increasing, and FP (τP ) = 1, the set TP is bounded from above by τP . Therefore, it has a
supremum, t′2. In other words, there exists t′2 ≤ τP and ε′ > 0 such that for any ε ∈ (0, ε′): (1)
FP (t) = FP (t2) for t ∈ (t′2−ε, t′2), and (2) FP (t) > FP (t2) for t ∈ (t′2, t

′
2+ε). Note that continuity

of uP (·) (Lemma 3) combined with (2) implies that uP (t
′
2) = u∗

P , the principal’s equilibrium
payoff, and hence uP (t

′
2) ≥ uP (t) for all t ≥ 0.

Step 1: Show that either (I) a(t) = 1 for all almost all t ∈ [t1, t
′
2), or (II) some t ∈ (t1, t

′
2) and ε > 0

exist such that a(t′′) < 1 for almost all t′′ ∈ (t− ε, t) and a(t′) = 1 for all t′ ∈ (t, t+ ε).

Consider TA = {t|t ∈ (t1, t
′
2)∩ a(t) < 1} (note the exclusion of t1). If TA has measure zero, then

(I).

Suppose TA has strictly positive measure. Consider t ∈ TA. Using Lemma 6, we conclude
that an interval (t − ε, t + ε) ⊂ TA for some ε > 0. That is, the set T is open. It follows that
TA is a union of disjoint open intervals, i.e. TA = ∪K

k=1(qk, pk), where K ≤ ∞ and t1 ≤ q1 <

p1 ≤ q2 < p2... ≤ qk < pk... ≤ t2. That is, qk is the bottom of interval k and pk is its top. Note
that pk = qk+1 is allowed; in this case, the top of open interval k coincides with the bottom of
open interval k + 1. For ease of notation, if K = ∞, let pK ≡ limk→∞ pk, which exists because
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{pk} is a bounded monotone sequence. In addition, whether K is finite or infinite, pK ≤ t′2 by
construction.

Note that if a k ∈ K exists such that pk < qk+1, then (II). Indeed, consider time pk and 0 <

ε < min{pk − qk, qk+1 − pk}. If t′′ ∈ (pk − ε, pk), then qk < t′′ < pk, and hence a(t′′) < 1.
Simultaneously, if t′ ∈ (pk, pk + ε), then pk < t′ < qk+1, and hence a(t) = 1.

To proceed, consider the remaining possibility that pk = qk+1 for all k ∈ K. In this case, the
upper bound of interval k always coincides with the lower bound of interval k + 1. Thus, the
set T is an interval (q1, pK), with a countable number of points removed, i.e. T = {(q1, pK) −
{pk}∞k=1}. Therefore, for almost all t ∈ (q1, pK), we have a(t) < 1. In turn (5) implies that
µ1(t) = θ for almost all such t. Thus,,

up(pK)− uP (q1) =" pK

q1

exp(−ρs){(wP
0 (s) + wP

1 (s) + wP
S (s))}θds+ exp(−ρpK)W

P
φ (pK)θ − exp(−ρq1)W

P
φ (q1)θ.

Using Observation 1, and noting that exp(−ρs) < exp(−ρq1) for s ∈ (q1, pK ], we have

uP (pK)− uP (q1) ≤ exp(−ρq1)(W
P
φ (q1)−W P

φ (pK))θ + exp(−ρpK)W
P
φ (pK)θ − exp(−ρq1)W

P
φ (q1)θ =

−( exp(−ρq1)− exp(−ρpK))W
P
φ (pK))θ =

−( exp(−ρq1)− exp(−ρpK))(1−G(pK))(1− FP (t2)))θ < 0.

Therefore, uP (pK) < uP (q1) ≤ uP (t
′
2). Because uP (·) is continuous (see Lemma 3), it must be

the case that pK < t′2.

Finally, consider time pK and 0 < ε < min{pK − q1, pK − t′2}. If t′′ ∈ (pK − ε, pK), then
t′′ ∈ (q1, pK). Recall that a(t′′) < 1 for almost all such t′′. Furthermore, if t′ ∈ (pK , pK + ε), then
t′ ∈ (pK , t

′
2), and hence, a(t′) = 1. This completes the proof of Step 1.

Step 2: Show that a(t) = 1 for all almost all t ∈ [t1, t
′
2).

Step 2 is proved by establishing that Case (II) in the statement of Step 1 leads to a contradic-
tion. Therefore, suppose that for some t ∈ (t1, t

′
2) and ε > 0, exist such that a(t′′) < 1 for

almost all t′′ ∈ (t− ε, t), and a(t′) = 1 for all t′ ∈ (t, t+ ε).

Consider t− ε < tL < t < tM < tH < t+ ε ≤ t′2. By construction, a(t) = 1 for all t ∈ [tM , tH ]. In
addition, FP (tM) = FP (tH) = FP (t2) < 1. From Lemma 5 part (iii), we have

uA(tH)− uA(tM)

1− FP (t2)
= uFB

A (tH)− uFB
A (tM).
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Using Lemma 5 part (ii), we have

uA(tM)− uA(tL) ≥

{exp(−ρtM)WA
φ (tM)− exp(−ρtL)W

A
φ (tL)a(tL)}(µ− β)− {exp(−ρtL)− exp(−ρtM)}WA

φ (tL)β.

Note that a(tL) ≤ 1 and WA
φ (tL) ≤ 1. It follows that

uA(tM)− uA(tL) ≥

{exp(−ρtM)WA
φ (tM)− exp(−ρtL)W

A
φ (tL)}(µ− β)− {exp(−ρtL)− exp(−ρtM)}β.

Next, note that FP (tM) = FP (tL) = FP (t2) < 1. Substituting and simplifying, we have

uA(tM)− uA(tL)

1− FP (t2)
≥

− {exp(−ρtL)(1−G(tL))− exp(−ρtM)(1−G(tM))}(µ− β)− {exp(−ρtL)− exp(−ρtM)}β

= −(γ(tL)− γ(tM)),

where γ(t) ≡ exp(−ρt){(1−G(t))(µ− β) + β}.

Next, note that

uFB
A (tH)− uFB

A (tL)

1− FP (t2)
=

uFB
A (tH)− uFB

A (tM)

1− FP (t2)
+

uFB
A (tM)− uFB

A (tL)

1− FP (t2)
.

Using the previous bounds, it follows that

uA(tH)− uA(tL)

1− FP (t2)
≥ uFB

A (tH)− uFB
A (tM)− (γ(tL)− γ(tM)).

Choose tM just above t. By continuity of γ(·), for tL sufficiently close to t, the difference
γ(tL) − γ(tM) ≈ 0. At the same time Lemma 1 guarantees uFB

A (tH) − uFB
A (tM) > 0. Therefore

for some ε′′ > 0, we have that t′′ ∈ (t − ε′′, t) implies uA(tH) − uA(t
′′) > 0. From (4), we have

fA(t
′′) = 0. Hence, µ1(t

′′) = 1, which in turn implies a(t′′) = 1. This contradicts the initial
assumption that a(t′′) < 1 for almost all t′′ ∈ (t− ε, t).

Step 3: Show that fA(t) = 0 for all t ∈ [t1, t
′
2).

From Step 2, a(t) = 1 for almost all t ∈ [t1, t
′
2). Consider t1 ≤ t < t′2. For any such t, it is
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possible to find a t′ ∈ (t, t′2) for which a(t′) = 1. Note that

uA(t
′)− uA(t)

1− FP (t2)
=

" t′

t

exp(−ρs)g(s)(µ+ (1− µ)β)ds+ exp(−ρt′)(1−G(t′))µ− exp(−ρt)(1−G(t))(β + a(t)(µ− β)) ≥
" t′

t

exp(−ρs)g(s)(µ+ (1− µ)β)ds+ exp(−ρt′)(1−G(t′))µ− exp(−ρt)(1−G(t))µ =

uFB
A (t′)− uFB

A (t) > 0,

where the last equality follows from t′ < t′2 ≤ τP < τA. It follows that for any t ∈ [t1, t
′
2), there

exists some t′ such that uA(t
′) > uA(t). From (4), we have fA(t) = 0. Obviously t′2 ≥ t2, and

fA(t) = 0 holds for t ∈ [t1, t2).

Proof of Lemma 9. Consider TP = {t|FP (t) = FP (t2)}. Because TP is bounded from below by
0 and FP (·) is right-continuous, TP has a minimum, t1 ∈ [0, t1]. To prove the result, it will be
shown that t1 = 0.

Suppose that t1 > 0. Consider interval [t1, t′2) where t1 < t′2 < t2. Applying Lemma 8, we have
fA(t) = 0 for all t ∈ [t1, t

′
2). Next, consider interval [t1, t′′2] where t1 < t′′2 < t′2. Because fA(t) = 0

for t ∈ [t1, t
′′
2], we have FA(t1) = FA(t

′′
2). Furthermore, t′′2 < t2 < τP , where the last inequality

follows from FP (t2) < 1 and Lemma 4. Using Lemma 7 part (ii), there exists t0 < t1 such that
fP (t) = 0 for all t ∈ [t0, t

′′
2). Consider interval [t0, t′′′2 ] where t1 < t′′′2 < t′′2. Because fP (t) = 0 for

all such t, we have FP (t0) = FP (t
′′′
2 ). Furthermore, t′′′2 ∈ [t1, t2], and therefore FP (t

′′′
2 ) = FP (t2).

Hence, FP (t0) = FP (t2). Because t0 < t1, we have that t1 is not the minimum of TP .

Proof of Lemma 10. Consider TA = {t|FA(t) = FA(t2)}. Because TA is bounded from below
by 0 and FA(·) is right-continuous, TA has a minimum, t1 ∈ [0, t1]. To prove the result, it will
be shown that t1 = 0.

Suppose that t1 > 0. Consider interval [t1, t′2) where t1 < t′2 < t2. Applying Lemma 7 part
(ii), we have fP (t) = 0 for all t ∈ [t0, t

′
2), for some t0 < t1. By implication, fP (t) = 0 for all

t ∈ [t0, t
′′
2], where t1 < t′′2 < t′2. Hence, FP (t0) = FP (t

′′
2). Furthermore, because t′′2 < t2, we have

FP (t
′′
2) ≤ FP (t2) < 1. Applying Lemma 8, we have fA(t) = 0 for all t ∈ [t0, t

′′
2). By implication,

fA(t) = 0 for all t ∈ [t0, t
′′′
2 ], where t1 < t′′′2 < t′′2. Therefore, FA(t0) = FA(t

′′′
2 ) = FA(t2), where

the last equality follows from t′′′2 ∈ (t1, t2). Because t0 < t1 and FA(t0) = FA(t2), we have that
t1 is not the minimum of TA.
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7.2. Proof of Corollary 2

Proof of Corollary 2. Part (i). Obviously, σ has no effect on τP . To see that it reduces τM , recall
the following implicit function relating τM and σ derived in Proposition 2.

exp{−
" τP

τM

µ(1− θ)HR(s)− ρθ

θ − µ
ds} = 1− σ.

Differentiating with respect to σ,

dτM
dσ

{µ(1− θ)HR(τM)− ρθ

θ − µ
} exp{−

" τP

τM

µ(1− θ)HR(s)− ρθ

θ − µ
} = −1.

Simplifying,

dτM
dσ

{µ(1− θ)HR(τM)− ρθ

θ − µ
}(1− σ) = −1 ⇒

dτM
dσ

= {µ(1− θ)HR(τM)− ρθ

θ − µ
}(1− σ) = −θ − µ

1− σ

1

µ(1− θ)(HR(τM)− ρθ
µ(1−θ)

)
< 0,

where the last inequality follows because HR(s) > ρθ/(µ(1 − θ)) for s < τP , and τM < τP .
Next, note that

∂FA(t)

∂τM

dτM
dσ

= − 1

σ
(1− σFA(t))

µ(1− θ)HR(τM)− ρθ

θ − µ
(−θ − µ

1− σ

1

µ(1− θ)(HR(τM)− ρθ
µ(1−θ)

)
)

=
1− σFA(t)

σ(1− σ)
≥ 1

σ
.

Meanwhile, we have

∂FA(t)

∂σ
= − 1

σ2
FA(t) ≥ − 1

σ2
.

Hence, dFA(t)/dσ ≥ 1/σ − 1/σ2 > 0 for σ ∈ (0, 1). Therefore, an increase in σ increases FA(·),
resulting in a FOSD shift toward smaller t.

Note that FP (t) depends on σ only via τM and

dFP (t)

dτM
= −(1− FP (t))

β(1− µ)HR(τM)− ρµ

µ− β
< 0,

where the last inequality follows because HR(·) is decreasing, and τM < τA. Because an in-
crease in σ reduces τM , it increases FP (·), resulting in a FOSD shift toward smaller t.

13



Part (ii). First note that

HR(τP ) =
ρθ

µ(1− θ)
⇒ τ ′P (θ) =

ρ

H ′
R(τP )µ(1− θ)2

< 0,

where the inequality follows from HR(·) < 0.

Next, recall that Proposition 2 gives an implicit function relating τM , τP , and σ,

exp{−
" τP

τM

µ(1− θ)HR(s)− ρθ

θ − µ
ds} = 1− σ.

Let

HA(s) ≡
µ(1− θ)HR(s)− ρθ

θ − µ

hA(s) ≡
dHA(s)

dθ
=

−(µHR(s) + ρ)(θ − µ)− µ(1− θ)HR(s) + ρθ

(θ − µ)2
= −µ(1− µ)

(θ − µ)2
(HR(s)−

ρ

1− µ
).

Differentiating with respect to θ, we have

exp{−
" τP

τM

HA(s)ds}
,
HA(τM)τ ′M(θ)−HA(τP )τ

′
P (θ)−

" τP (θ)

τM (θ)

hA(s)ds
-
= 0.

Note that HR(τP ) = ρθ/(µ(1− θ)), which implies HA(τP ) = 0. By implication,

HA(τM)τ ′M(θ)−
" τP

τM

hA(s)ds = 0 ⇒ τ ′M(θ) =

0 τP
τM

hA(s)ds

HA(τM)
.

Next, note that for s ∈ [τM , τP ],

HR(s)−
ρ

1− µ
≥ ρθ

µ(1− θ)
− ρ

1− µ
=

ρ(θ − µ)

µ(1− µ)(1− θ)
> 0.

It follows that hA(s) < 0 for such s. Simultaneously, HR(s) > ρθ/(µ(1−θ)) and hence, HA(s) >

0. Combining these observations, τ ′M(θ) < 0.

Next, note that

FA(t) =
1

σ
(1− exp(−

" t

τM

HA(s)ds)).
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It follows that

dFA(t)

dθ
=

1

σ
exp(−

" t

τM

HA(s)ds)(

" t

τM

hA(s)ds−HA(τM)τ ′M(θ)).

Substituting for τ ′M(θ), we have

dFA(t)

dθ
=

1

σ
exp(−

" t

τM

HA(s)ds)(

" t

τM

hA(s)ds−
" τP

τM

hA(s)ds)

=
1

σ
exp(−

" t

τM

HA(s)ds)(−
" τP

t

hA(s)ds).

Recalling that hA(·) < 0 for such s, we have dFA(t)/dθ > 0, and hence an increase in θ results
in a FOSD shift toward smaller t.

Finally, note that FP (·) depends on θ only through τM , and for t ∈ [τM , τP )

dFP (t)

dτM
= (1− FP (t))

β(1− µ)HR(τM)− ρµ

β − µ
> 0,

where the last inequality follows because τM < τA. Thus, for all t ∈ [τM , τP ) the distribution
shifts up, and the upper bound τP where the distribution has an atom, also shifts left, resulting
in a FOSD shift toward smaller t.
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