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Abstract

This supplement covers two model variants not included in the main draft.



1 Opaque Standards

In this section we analyze an environment in which the principal can be one of two types.

With probability ν she has a high standard, θH , and with probability 1 − ν, a low one,

θL where θH > θL. With “transparent standards” the principal’s type is observed by the

agent at the beginning of the interaction. For each realization of the principal’s type, the

equilibrium is identical to the main model. With “opaque standards” the agent cannot

observe the principal’s type. This potential remedy is particularly salient in settings where

the decision to approve is made by a group, and the allocation of real authority is unknown

to the agent. For example, if two homeowners with different preferences decide whether to

accept or reject an offer on their house, the realtor may not be sure which homeowner has

the final say.

The goal is to characterize the equilibrium with opaque standards, and analyze its normative

properties. Denote the acceptance strategy of each principal ai(·), where i ∈ {H,L}, and
let aU(t) ≡ νaH(t) + (1 − ν)aL(t) denote the expected probability of acceptance at time t,

accounting for the agent’s uncertainty about the principal’s type.1 The agent’s expected

payoff of selecting cheating time t is identical to his payoff in the main model, substituting

the expected acceptance probability aU(·) for the acceptance probability a(·) of the main

model. Similar arguments to those in Lemma 4.3 (in the main text) establish that the agent

mixes continuously on an interval from time zero to some finite threshold tU , defining a

finite “phase of doubt.” Furthermore, over this interval, the expected acceptance probability

inherits the features of the acceptance probability in the main model: aU(·) is strictly greater

than φ, increasing, continuous, differentiable, and approaches one at the end of the phase of

doubt. After the phase of doubt, the acceptance probability is one, aU(t) = 1 for t > tU .

With opaque standards, the agent’s mixing distribution is the same, regardless of what stan-

dard he actually faces. In other words, both types of principal face the same mixed strategy.

Because the principal’s type orders her payoff according to single-crossing, it cannot be

that both types of principal are simultaneously indifferent between accepting and rejecting.

Consequently, if one type of principal mixes in equilibrium, then the other strictly prefers

accepting or rejecting. Furthermore, the low standards principal has a stronger incentive to

accept: thus, whenever the high type mixes, the low type accepts, and whenever the low

type mixes, the high type rejects. As we show in the following lemma, this ordering of the

principal’s incentives implies that under opaque standards, the phase of doubt is divided

into two sub-phases. In the first (possibly degenerate) sub-phase the low standards principal

1Because the principal makes a decision only after the agent makes a submission and her type concerns

her preferences, the agent does not update beliefs about the principal over time.
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mixes and the high standards principal rejects. In the second sub-phase, the low standards

principal accepts, and the high standards principal mixes.

Lemma 1.1 (Opaque standards equilibrium structure.). In equilibrium with uncertain stan-

dards, there exists tU ∈ (0,∞) and !tU ∈ [0, tU) such that

(i) the agent’s cheating time is drawn from a continuous mixed strategy with no mass

points or gaps supported on an interval [0, tU ].

(ii) for t ∈ [tU ,∞), both types of principal accept the project, aL(t) = aH(t) = 1.

(iii) for t ∈ [!tU , tU) the low standards principal always accepts, aL(t) = 1, and the high

standards principal’s acceptance strategy is strictly increasing, continuous, and differ-

entiable almost everywhere, with limt→tU aH(t) = 1.

(iv) if !tU > 0, then for t ∈ [0,!tU) the high standards principal always rejects aH(t) = 0, and

the low standards principal’s acceptance strategy aL(·) is strictly increasing, continuous,
and differentiable, with limt→!tU aL(t) = 1. Furthermore, limt→!tU aH(t) = 0.

To complete the characterization, we separately consider equilibria with a “one stage” struc-

ture, corresponding to the case !tU = 0, and a “two stage” structure, corresponding to !tU > 0.

First, we introduce some additional notation that simplifies the exposition. For i ∈ {H,L},
let

µi ≡ λ
1− θi
θi

ti ≡ − ln(1− σ)

µi

δU ≡
− ln(1− ν"φ

"φ−φ
)

ρ
ν∗ ≡ (1− φ

"φ
)(1− exp(−ρtH))

Note that µi is the equilibrium cheating rate when the agent observes that he faces a type

i ∈ {H,L} principal. In other words, it is the equilibrium cheating rate under transparency

for the type i principal. Similarly, ti is the duration of the phase of doubt under transparency

with a type i principal. By implication, µL > µH and tL < tH . As we will see, δU is the

duration of the second stage in the two-stage equilibrium. Note that δU is well-defined

whenever ν < 1 − φ/"φ. Finally, we will also see that the relationship between ν and ν∗

determines whether the equilibrium has one or two stages of faking.

In a one stage equilibrium, the low standards principal accepts all arrivals, while the high

standards principal mixes for arrivals before tU and accepts thereafter. Because only the

high type principal mixes in the phase of doubt, in such equilibria, the agent behaves as if

he faces only the high type principal. Thus, the agent mixes over the same phase of doubt

as in the main model, [0, tH ]. By implication, the low standards principal strictly prefers

acceptance in both phases (θL < θH < 1). Furthermore, from the agent’s perspective, the
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expected acceptance probability is the same as in the main model. However, because the low

standards principal always accepts, the high standards principal’s acceptance strategy must

be adjusted to maintain the same expected acceptance probability as in the main model,

νaH(t) + (1 − ν) = a(t). Therefore, a one stage equilibrium exists only if ν is relatively

large: if ν is small, then 1 − ν > a(0), which would imply aH(0) < 0. Intuitively, if the

probability of a low standards principal is high, then the probability that an early arrival is

accepted is also high. Consequently, the strategic agent will be tempted to cheat early, even

if he is rejected by the high type. Given the low probability of a high-standards principal,

no adjustment in the high type’s acceptance probability can offset this.

Proposition 1.1 (Opaque standards, One Stage.). With opaque standards, a one phase

equilibrium exists if and only if ν > ν∗, and it is characterized below. Furthermore, with

opaque standards, no other one phase equilibrium exists.

Strategies. The agent’s cheating time is drawn from distribution function

F (t) =
1

σ
(1− exp(−µHt))

supported on interval [0, tH ]. If t ∈ [0, tH ], then the high type principal accepts with probability

aH(t) =
1

ν

#φ
"φ
+ (1− φ

"φ
) exp{−ρ(tH − t)}− (1− ν)

$
,

and with probability 1 otherwise. The low type principal always accepts, aL(t) = 1. The

expected acceptance probability aU(·) is identical to the acceptance probability in the main

model, with principal’s standard known to be θH .

Beliefs. If t ∈ (0, tH), then g(t) = θH , and g(t) = 1 otherwise.

Payoffs. The strategic agent’s equilibrium payoff is aU(0)− φ, identical to the main model

with principal’s standard known to be θH . The high standards principal’s payoff is

VH = (1− θH)(1− σ)

% ∞

tH

λ exp{−(ρ+ λ)t}dt,

and the low type principal’s payoff is

VL = λ(1− θL
θH

)

% tH

0

exp{−(ρ+
λ

θH
)t}dt+ (1− θ)(1− σ)

% ∞

tH

λ exp{−(ρ+ λ)t}dt.

Normative Ranking. In the one phase equilibrium with opaque standards, (i) the high

type principal’s payoff is the same as in the unique equilibrium with transparent standards.

(ii) The low type principal’s payoff is strictly higher than in the unique equilibrium with

transparent standards.
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Figure 1: Proposition 1.1

When the principal is probable to have high standards, opacity (weakly) increases the payoffs

of both types of principal. Because the agent is most likely to interact with the high stan-

dards principal, it is the high type’s incentive to accept that restrains the strategic agent’s

incentive to cheat. In equilibrium, the strategic type effectively targets only the high type

principal, completely ignoring the low type. In particular, the agent’s strategy is identical

to the baseline model, assuming that the principal’s standard is known to be θH . Thus, the

high type principal obtains the same equilibrium payoff with opacity as with transparency.

In contrast, when the principal’s realized standard is low, she accepts every submission, ob-

taining a positive payoff in both the doubt and credibility phases. However, the agent cheats

more slowly with opacity than transparency if he faces the low type principal; thus, opacity

also delays the onset of the credibility phase for the low type. The low type principal faces

a tradeoff with opacity: a higher belief during the phase of doubt (and acceptance of all

arrivals), but a longer phase of doubt. It turns out that the benefit generated by a higher

belief during the phase of doubt outweighs the delay in restoring credibility; i.e., opacity

strictly benefits the low type principal.

We turn next to the two stage equilibrium, in which !tU > 0. The second stage resembles

the one stage equilibrium—the low type principal always accepts and high type mixes. In

contrast to the one stage equilibrium, however, the high type’s acceptance probability begins

at zero, a(!tU) = 0, finishing at one, a(tU) = 1. Furthermore, in the first phase, the high type

principal rejects, while the low type principal mixes. The low type’s acceptance probability

is positive at time zero, and increases during the first stage hitting one at the transition
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time !tU . The agent’s mixed strategy, while continuous, also takes a different form in the

two sub-phases. In the first sub-phase, the agent cheats at a faster rate, inducing mixing

by the low type principal; in the second, the agent cheats more slowly, inducing mixing by

the high type principal. The agent and principal indifference conditions over the two stages,

combined with the appropriate continuity boundary conditions define a system of differential

equations that characterize the equilibrium.

Proposition 1.2 (Opaque standards, Two Stages.). With opaque standards, a two stage

equilibrium exists if and only if ν < ν∗, and it is characterized below. Furthermore, with

opaque standards, no other two stage equilibrium exists.

Stage Transitions. The transition times !tU , tU in the two stage equilibrium are

!tU = tL − µH

µL

δU tU = !tL + δU .

Furthermore, 0 < !tU < tU < tH .

Strategies. The agent’s cheating time is drawn from continuous distribution function

F (t) =

&
'

(

1
σ
(1− exp(−µLt)) for t ∈ [0,!tU)

1
σ
(1− exp(−µHt− (µL − µH)!tU)) for t ∈ [!tU , tU ]

supported on [0, tU ]. If t ∈ [0,!tU ], then the high type principal always rejects, aH(t) = 0, and

the low type principal accepts with probability

aL(t) = (
1

1− ν
)(
φ

"φ
+ (1− φ

"φ
− ν) exp{−ρ(!tU − t)}).

If t ∈ [!tU , tU ], then the high type principal accepts with probability

aH(t) =
1

ν

#φ
"φ
+ (1− φ

"φ
) exp{−ρ(tU − t)}− (1− ν)

$
,

and the low type principal always accepts, aL(t) = 1. If t ≥ tU , then both types of principal

always accept, aL(t) = aH(t) = 1.

Beliefs. If t ∈ (0,!tU), then g(t) = θL. If t ∈ (!tU , tU), then g(t) = θH . Otherwise g(t) = 1.

Payoffs. The agent’s equilibrium payoff is aU(0)−φ. The high standards principal’s payoff

is

VH = (1− θH)(1− σ)

% ∞

tU

λ exp{−(ρ+ λ)s}ds.

The low type principal’s payoff is

VL = exp(−(µL−µH)!tU)(1−
θL
θH

)

% tU

!tU
λ exp(−(ρ+

λ

θH
)t)dt+(1−θL)(1−σ)

% ∞

tU

λ exp(−(ρ+λ)t)dt.
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Normative Ranking. In the two stage equilibrium with opaque standards, (i) the high type

principal’s payoff is strictly higher than in the unique equilibrium with transparent standards.

(ii) The low type principal’s payoff is strictly higher than in the unique equilibrium with

transparent standards.

Figure 2: Proposition 1.2. Note that g(·) jumps from θL to θH at !tU .

When the probability of the low type principal is sufficiently high, then the agent does not

ignore her—as he did in the one phase equilibrium. Instead, in the initial stage, t ∈ [0,!tU),
the agent cheats aggressively, gambling that the evaluator is the low type, who accepts even

early arrivals with positive probability. As a consequence of this increase in the cheating

rate, the high type principal is strictly better off than under transparency. Recall that under

transparency, the agent cheats with rate µH throughout the phase of doubt. However, in

the two stage equilibrium with opacity, the agent starts off cheating at rate µL > µH , and

switches to rate µH at some interior time. Thus, the agent’s overall credibility is restored

more quickly, at time tU < tH . Because the high type principal’s payoff is determined

exclusively by the duration of the phase of doubt, she strictly benefits from opacity. The

low type faces an initial phase with a high cheating rate and no surplus, a second phase

with a lower cheating rate and positive surplus, and finally the restoration of full credibility.

Though it takes longer for the agent’s credibility to be restored fully, the low type expects

positive surplus in the second phase. On net, she also benefits from opacity.

It is worth pointing out that endowing the principal with a disclosure technology by which

she can verify her type to the agent at the outset does not undermine this equilibrium. That
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is, even if the principal has such a technology, an equilibrium exists in which neither type of

principal uses it.2

2 External Impediments

In this section, we consider external impediments that prevent the principal from approving

the project immediately. In particular, we suppose that the principal initially faces a “log-

jam.” If a project arrives during the logjam, the principal observes the arrival time, but she

must delay her approval decision until the logjam clears, an event which occurs at Poisson

rate γ and is observed privately by the principal.3 This situation might arise, for example, if

the principal is occupied with other projects, or if the project must clear additional bureau-

cratic hurdles within the organization before it can be approved or implemented. As in the

main model, payoffs are realized when the principal makes her decision. In this setting, it

is convenient to interpret ρ as the rate at which the game ends rather than the rate of time

preference. Then, by delaying the principal’s decision, the logjam admits the possibility that

the game ends before a submission can be approved.

There are multiple equilibria in this version of the game, but they are all expected payoff

equivalent. Multiplicity arises because both types of the principal (unjammed and jammed)

have the same beliefs about the project, and thus, the same approval incentives. In other

words, given an arrival at time t, both types either strictly prefer to accept, strictly prefer

to reject, or are indifferent. When both types are indifferent they may mix with different

acceptance strategies in equilibrium—nevertheless the expected probability of approval is

pinned down uniquely by the agent’s indifference condition, which ensures that he is willing

to mix.

With these qualifications in mind, we economize on notation and solve for a pooling equi-

librium in which the unjammed and jammed types of principal use the same acceptance

strategy, aJ(t).
4 In other words, the unjammed type approves immediately with probabil-

2Because both types of principal prefer opacity to transparency (at least weakly), if the type i principal

is expected not to disclose her type, then it is a best response for the type j principal not to disclose. In

some cases, equilibria with partial disclosure also exist.

3If the agent can observe whether the principal is jammed, the principal may also benefit from the logjam

in this case. We also have analyzed a case in which the jam can only clear after the agent submits a project.

Thus, the jam is essentially a delay in the evaluation process, which can also benefit the principal. Details

for both extensions available upon request.

4This also corresponds to an equilibrium of the model in which the principal does not observe whether

she is jammed; e.g., the logjam comes from “red tape” in some other part of the organization.
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ity aJ(t) and the jammed type approves with this same probability as soon as she is able,

provided the game does not end first.5

From the agent’s perspective, the possibility of a logjam imposes an upper bound on the

probability that a project is approved. In particular, if the project is submitted at time t

and the principal would like to approve it, the probability that she is eventually able to do

so is

ā(t) ≡ 1− exp(−γt)) *+ ,
unjammed

+
γ

γ + ρ
exp(−γt)

) *+ ,
jammed

= 1− ρ

ρ+ γ
exp(−γt).

The first term is the probability that the logjam has cleared before t, in which case the prin-

cipal can approve the project at the time it is submitted; the second term is the probability

that the logjam is still present at time t, multiplied by the probability that the logjam clears

before the game terminates.

To highlight our main case of interest, we focus on a logjam that clears slowly.

Assumption 1. The rate at which the logjam clears is sufficiently low that ā(t) is less than

the equilibrium approval of the main model at time zero for all σ ∈ (0, 1),

γ

γ + ρ
<

φ

"φ
.

To develop intuition for the effect of the logjam, consider a possible equilibrium in which the

agent never fakes. In such a putative equilibrium, the principal always approves and hence

the agent’s best response is determined by the condition

u′(t) = exp(−(λ+ ρ)t){ā′(t)− ρā(t) + φ(ρ+ λ)}

= exp(−(λ+ ρ)t)ρ{exp(−γt)− (1− φ

"φ
)}.

It follows that the agent would submit a fake at time t∗ ∈ (0,∞), where

exp(−γt∗) = 1− φ

"φ
.

Of course, if the agent did so, the principal would infer that a submission at this time is

fake, which implies that such an equilibrium does not exist.6 Unlike the main model, where

5The passage of time while waiting for a jam to clear does not change the principal’s belief about whether

a project that was submitted at t is real or fake.

6The corresponding calculation implies that the ethical type’s payoff of submitting a project at time t is

strictly decreasing when the acceptance probability is ā(·). Thus, the ethical type would like to submit a

real project as soon as it arrives.
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the agent would like to deviate by faking immediately, in the logjam model the agent would

like to delay faking until t∗ > 0. Intuitively, the agent expects that the principal is likely to

be jammed initially, so there is less incentive for the agent to pay the cost of faking in order

to rush his project out early.

This observation has implications for the equilibrium structure. When selecting his optimal

cheating time, the agent can deviate from t∗ both to later times (t > t∗) and to earlier times

(t < t∗), which suggests that the support of the agent’s equilibrium mixed strategy is an

interval around t∗. Furthermore, if the logjam clears slowly, then t∗ is large, which suggests

that the bottom of the support is strictly positive.

Lemma 2.1. (Logjam Equilibrium Structure). Let a(t) ≡ aJ(t)ā(t) be the expected probability

of approval. In an equilibrium with a logjam, there exist tJ ∈ (t∗,∞) and !tJ ∈ (0, t∗) such

that

(i) the agent’s mixed strategy is drawn from a continuous mixed strategy with no mass

points or gaps supported on interval [!tJ , tJ ].

(ii) the principal’s expected acceptance strategy a(t) is continuous and increasing for all

t ≥ 0.

(iii) for t ∈ (!tJ , tJ), aJ(t) < 1 so that a(t) < a(t).

(iv) for t /∈ (!tJ , tJ) aJ(t) = 1 so that a(t) = a(t).

This lemma highlights two main differences between the logjam equilibrium and the main

model. First, with a logjam, there is an early phase (t < !tJ), in which the agent does not

fake and the principal accepts with the maximum expected probability a(·)—there is no such

phase in the main model. Because the principal is likely to be jammed at early times, there

is less incentive for the agent to accelerate the arrival of his project by faking. Second, once

the agent’s credibility is fully restored (t > tJ) the principal is constrained to accept with

expected probability a(·) < 1. From an ex ante perspective, the first effect is beneficial to

the principal, because she is able to accept early real arrivals some of the time, while the

second effect is harmful, because it prevents her from accepting late real arrivals as often as

she would like.

We complete the characterization with the following proposition.

Proposition 2.1. (Logjam.) With a logjam, the pooling equilibrium of the game is charac-

terized as follows.

Strategies. The agent’s cheating time is drawn from continuous distribution function

F (t) =
1

σ
(1− exp(−µ(t− !tJ))
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supported on interval [!tJ , tJ ], where !tJ is such that

exp(−γ!tJ) = (1− φ

"φ
)(1 +

γ

ρ
)

1− exp(−ρt)

1− exp(−(ρ+ γ)t)

and tJ = !tJ + t. If t ∈ (!tJ , tJ), then

a(t) =
φ

"φ
+ (a(tJ)−

φ

"φ
) exp(−ρ(tJ − t))

and a(t) = a(t) otherwise.

Beliefs. If t ∈ (!tJ , tJ), then g(t) = θ, and g(t) = 1 otherwise.

Payoffs. The strategic agent’s equilibrium payoff is

UJ =

% !tJ

0

λ exp(−(ρ+ λ)t)a(t)dt+ exp(−(ρ+ λ)!tJ)(a(!tJ)− φ).

The principal’s ex ante equilibrium payoff is

VJ = (1− θ)(

% !tJ

0

λ exp(−(ρ+ λ)t)a(t)dt+ (1− σ)

% ∞

tJ

λ exp(−(ρ+ λ)t)a(t)dt).

Normative Ranking. The principal is strictly better off in the logjam equilibrium than in

the equilibrium of the main model if σ is sufficiently large, and she is strictly worse off if σ

is sufficiently small.

With a logjam, the equilibrium has two phases of credibility, an early one (0,!tJ), and a late

one (tJ ,∞), with a single phase of doubt [!tJ , tJ ], sandwiched between them. During the

initial phase of credibility, the principal accepts all arrivals with maximum probability, but

because the strategic type does not fake, the principal’s belief about the agent’s ethics does

not evolve. When the phase of doubt is reached, the agent begins to fake at rate µ, as in the

main model, which leaves the principal indifferent between accepting and rejecting. Because

the principal’s belief about the agent at time !tJ is the same as at the beginning of the game

and the agent fakes at the same rate during the phase of doubt, it takes the same amount

of time for his credibility to be fully restored. That is, the duration of the phase of doubt is

the same as in the main model, tJ −!tJ = t. Finally, we reach the second phase of credibility,

in which the principal is confident that the agent is ethical and accepts all arrivals with

maximum probability.

The initial phase of credibility generates a normative gain for the principal: an arrival in this

phase is real and is accepted with expected probability ā(·). At the same time, the second

phase of credibility generates a normative loss for the principal. Although the principal is
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Figure 3: Proposition 2.1. Note that g(·) jumps from 1 to θ at !tJ and back up to 1 at tJ .

confident that such an arrival is real, the possibility of being jammed prevents her from

accepting it with probability 1. In addition, the second phase of credibility is reached later

than in the main model, at time tJ = !tJ + t, rather than at time t. Thus, the positive

surplus generated by such an arrival is discounted more heavily. The normative impact of

the logjam depends on which of these effects dominates. When σ is large, the phase of doubt

is very long in the main model and the principal’s surplus approaches zero. We show that

with the logjam, the duration of the initial phase of credibility approaches a strictly positive

limit as σ gets large. Thus, the principal’s expected surplus with the logjam is bounded

away from zero. By implication, when she faces an agent who is likely to be strategic, the

logjam benefits the principal. When σ becomes small, the duration of the phase of doubt

collapses to zero. In the main model, the principal accepts all arrivals, which she is sure are

real, and her payoff converges to the first best. With the logjam, she accepts all projects

with maximum probability, and she is sure that they are real. However, her payoff is strictly

smaller because she cannot approve all projects with probability 1. Consequently, the logjam

is harmful if the agent is likely to be ethical.
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A Proofs

A.1 Proofs for Opaque Standards

Proof of Lemma 1.1. Proof of (i). This point follows exactly from the arguments in the

proof of Lemma 4.3 in the main text, replacing a(·) with aU(·).

Step 0. We claim that for t ∈ [0, tU), the expected acceptance probability aU(·) is strictly

greater than φ, strictly increasing, continuous, and differentiable almost everywhere, with

limt→tU aU(t) = 1. Furthermore, for t ∈ [tU ,∞), the expected acceptance probability is 1,

aU(t) = 1. These points follow exactly from the arguments in the proof of Lemma 4.3 in the

main text, replacing a(·) with aU(·).

By analogy with the proof of Lemma 4.3 in the main text, let tU ≡ inf{t : aU(t) = 1}.
Existence of tU ∈ (0,∞) is established by analogy with Lemma 4.3 in the main text.

Proof of (ii). From Step 0, if t ≥ tU then aU(t) = 1, and hence, νaH(t) + (1 − ν)aL(t) = 1.

Because aL(t) ≤ 1 and aH(t) ≤ 1, it follows that aH(t) = aL(t) = 1.

Step 1. We show that for any t ≥ 0, (a) if aH(t) > 0, then aL(t) = 1 and (b) if aL(t) < 1, then

aH(t) = 0. Both (a) and (b) follow immediately from each type of principal’s sequentially

rational acceptance strategy, coupled with θH > θL.

Step 2. We show that for any t ∈ [0, tU), exactly one of the following three conditions

(A,B,C) must hold: (A) aH(t) ∈ (0, 1) and aL(t) = 1, (B) aL(t) ∈ (0, 1) and aH(t) = 0, (C)

aL(t) = 1 and aH(t) = 0. From the definition of tU , we know that aU(t) < 1 for t < tU .

Hence, for such t, at least one of ai(t) < 1 for i ∈ {H,L}.

If aL(t) < 1, then aH(t) = 0 from Step 1 (b). Furthermore, from Step 0, we know that

aU(t) > φ. Coupled with aH(t) = 0, this implies aL(t) > 0. Hence, we have (B).

If aH(t) < 1, then there are two possibilities. If aH(t) > 0, then from Step 1 (a), we have

aL(t) = 1, case (A). If aH(t) = 0, then we must have aL(t) > 0 (otherwise aU(t) = 0,

contradicting Step 0). If aL(t) < 1, then case (B). If aL(t) = 1 then case (C).

Step 3. Consider 0 ≤ t < t′ < tU . We show that (a) If aH(t) ∈ (0, 1) then aH(t) < aH(t
′) < 1

and aL(t
′) = 1, (b) If aL(t

′) ∈ (0, 1) then aL(t) < aL(t
′) < 1 and aH(t) = 0. From Step 0, we

have aU(t
′) > aU(t). Thus,

νaH(t
′) + (1− ν)aL(t

′) > νaH(t) + (1− ν)aL(t). (1)

To prove claim (a), suppose that aH(t) ∈ (0, 1). By Step 1 (a), we have aL(t) = 1. Hence,
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(1) implies

νaH(t
′) + (1− ν)aL(t

′) > νaH(t) + (1− ν)

ν(aH(t
′)− aH(t)) > (1− ν)(1− aL(t

′)) ≥ 0,

and hence, aH(t
′) > aH(t) > 0. From Step 2, we have aH(t

′) < 1 and aL(t
′) = 0 (Case A).

To prove claim (b), suppose that aL(t
′) ∈ (0, 1). By Step 1 (b) we have aH(t

′) = 0. Hence,

(1) implies

(1− ν)aL(t
′) > νaH(t) + (1− ν)aL(t)

(1− ν)(aL(t
′)− aL(t)) > νaH(t) ≥ 0

and hence, aL(t) < aL(t
′) < 1. From Step 2, we must have aL(t) > 0 and aH(t) = 0.

Step 4. We show that there exists some t < tU such that aH(t) ∈ (0, 1). Suppose not. From

Step 2, we have that aH(t) for all t < tU . Thus, for all such t, we have aU(t) = (1−ν)aL(t) ≤
(1− ν) < 1. By implication limt→tU aU(t) ≤ 1− ν < 1, contradicting Part (ii).

Let !tU ≡ inf{t : aH(t) > 0}.

Proof of (iii). From Step 4, we know that !tU < tU . Thus, for any t ∈ (!tU , tU), there exists

t′ = t− ε such that aH(t
′) > 0. Applying Step 3, we know that for any t ∈ (!tU , tU) we have

aH(t) ∈ (0, 1) and aL(t) = 1. Thus, for such t, we have aU(t) = νaH(t) + (1 − ν). Because

aU(·) is continuous, increasing, and differentiable on [0, tU) and !tU < tU , we have that aH(·)
is continuous, increasing, and differentiable for such t. Finally, from limt→tU aU(t) = 1, we

have limt→tU aH(t) = 1.

Step 5. Suppose !tU > 0. We show that aL(t) ∈ (0, 1) and aH(t) = 0 for t < !tU . From

the definition of !tU , we have aH(t) = 0 for t < !tU . From Step 2, for all such t, we have

either aL(t) ∈ (0, 1) for aL(t) = 1. Consider t, t′ < !tU with t′ > t. From Step 0, we have

aU(t
′) > a(t), and hence, aL(t

′) > aL(t). By implication aL(t) < 1. Hence, aL(t) ∈ (0, 1).

Step 6. Suppose !tU > 0. We show that aL(t) is continuous, increasing, differentiable for

t < !tU . From Step 5, we have aH(t) = 0 for t < !tU . Therefore aU(t) = (1− ν)aL(t). Because

aU(·) is continuous, increasing, and differentiable, the conclusion follows.

Step 7. Suppose !tU > 0. We show that limt→!tU aL(t) = 1 and limt→!tU aH(t) = 0. Let

t− ≡ !tU − ε and t + − ≡ !tU + ε for ε > 0. Note that for t > !tU we have aL(t) = 1. It is

therefore obvious that limε→0 aL(t
+) = 1. Similarly, for t < !tU we have aH(t) = 0. Therefore

it is obvious that limε→0 aH(t
−) = 0. What remains to establish is

lim
ε→0

aL(t
−) = 1 lim

ε→0
aH(t

+) = 0.

13



Note that continuity of aU(·) at !tU implies

lim
ε→0

[aU(t
−)− aU(t

+)] = 0.

Substituting aL(t
+) = 1 and aH(t

−) = 0 we have,

lim
ε→0

[(1− ν)aL(t
−)− νaH(t

+)− (1− ν)] = 0 ⇒ lim
ε→0

[(1− ν)(aL(t
−)− 1)− νaH(t

+)] = 0.

Because aL(·) ≤ 1 and aH(·) ≥ 0 the result follows.

Proof of (iv). Follows from Steps 5-7.

Proof of Proposition 1.1. We construct a one phase equilibrium, consistent with Lemma 1.1,

showing that such an equilibrium exists if and only if ν > (1− φ
"φ
)(1− exp(−ρtH)), and that

the only such equilibrium is the one characterized in the statement of the proposition. To

this end, consider the one phase structure, characterized by Lemma 1.1 with !tU = 0.

Strategies. If an equilibrium with the one phase structure exists, then for all t ∈ [0, tU) we

have aH(t) ∈ (0, 1). By implication,

g(t) = θH ⇒ µ(t) = λ
1− θH
θH

⇒ F (t) =
1

σ
(1− exp(−λ

1− θH
θH

t)),

where the last step uses point (i) of Lemma 1.1 to rule out a mass point in the agent’s mixed

strategy, thereby identifying an integration constant. Using point (i) of Lemma 1.1, we have

F (tU) = 1, implying tU = tH as stated in the proposition.

For the acceptance probability, note that the agent’s expected payoff of waiting to cheat

until time t is

u(t) =

% t

0

exp(−(λ+ ρ)s)(νaH(s) + (1− ν))ds+ exp(−(λ+ ρ)t)(νaH(t) + (1− ν)− φ),

where we have used Lemma 1.1 (iii) to establish aH(t) ∈ (0, 1) and aL(t) = 1. Furthermore,

since aH(·) is differentiable for t < tU . It follows that

u′(t) = 0 ⇐⇒ νa′H(t)− ρ(νaH(t) + (1− ν)) + φ(ρ+ λ) = 0.

Solving, we have

aH(t) =
1

ν

#φ
"φ
− (1− ν)

$
+ κ exp{ρt},

where κ is an integration constant. Using the boundary condition aH(tH) = 1 we find

aH(t) =
1

ν
(
φ

"φ
− (1− ν)) +

#
1− 1

ν
(
φ

"φ
− (1− ν))

$
exp{−ρ(tH − t)}

=
1

ν
(
φ

"φ
+
#
1− φ

"φ

$
exp{−ρ(tH − t)}− (1− ν)).
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Therefore, such an equilibrium exists provided two additional conditions,

a′H(t) > 0 ⇐⇒ 1

ν
(
φ

"φ
− (1− ν)) < 1 ⇐⇒ φ < "φ

and

aH(0) ≥ 0 ⇐⇒ ν ≥ (1− φ

"φ
)(1− exp{−ρtH}).

The first of these is Assumption 1, the second is stated in the proposition.

Payoffs. The strategic agent’s payoff is equal to his payoff of submitting at time 0, which is

aU(0)− φ = νaH(t) + (1− ν)− φ =
φ

"φ
+ (1− φ

"φ
) exp(−ρtH)− φ,

which is identical to the strategic agent’s payoff in the main model, when facing a principal

with known standard θH . The high type principal gets payoff zero from any arrival inside

the phase of doubt, and a payoff of one if the phase of credibility is reached. Thus, the high

type principal’s payoff is

(1− θH)(1− σ)

% ∞

tH

λ exp(−(λ+ ρ)s)ds,

exactly as in the main model where the principal’s payoff is known to be θH . The low type

principal’s payoff, in this equilibrium is

% tH

0

exp(−(ρ+λ)t)(λ(1−σF (t))(1−θL)−σf(t)θL)dt+(1−θL)(1−σ)

% ∞

tH

λ exp(−(ρ+λ)t)dt.

In this equilibrium, 1− σF (t) = exp(−rHt) and σf(t) = rH exp(−rHt), where rH ≡ λ1−θH
θH

.

Therefore, the low type principal’s payoff is

VL =

% tH

0

exp(−(ρ+ λ+ rH)t)(λ(1− θL)− rHθ)dt+ (1− θL)(1− σ)

% ∞

tH

λ exp(−(ρ+ λ)t)dt.

Substituting for rH , we have

VL =

% tH

0

exp(−(ρ+
λ

θH
)t)(λ(1− θL)− θLλ

1− θH
θH

) dt+ (1− σ)(1− θL)

% ∞

tH

λ exp(−(ρ+ λ)t) dt

=λ(1− θL
θH

)

% tH

0

exp(−(ρ+
λ

θH
)t) dt+ (1− σ)(1− θL)

% ∞

tH

λ exp(−(ρ+ λ)t) dt.

Normative Analysis. Point (i) is obvious, since the high type principal’s payoff is the same

as under transparency, where she is known to be the high type.
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(ii) We seek to show that this is larger than the payoff in the main model, V , given in

Proposition ??. Note first that for θH = θL, the two expressions are equal, i.e. VL = V .

Differentiating with respect to θH , we have

dVL

dθH
=

λθL
θ2H

% tH

0

exp(−(ρ+
λ

θH
)t) dt

+ λ(1− θL
θH

)[exp(−(ρ+
λ

θH
)tH)

dtH
dθH

+

% tH

0

exp(−(ρ+
λ

θH
)t)

λ

θ2H
tdt]− (1− σ)(1− θL)λ exp(−(ρ+ λ)tH)

dtH
dθH

.

Note that

(1− σ) exp(−(ρ+ λ)tH) = exp({1 + (ρ+ λ)
θH

λ(1− θH)
} ln(1− σ)) = exp(−(ρ+

λ

θH
)tH),

and

dtH
dθH

= −λ(1− θH) + λθH
λ2(1− θH)2

ln(1− σ) = − 1

λ(1− θH)2
ln(1− σ) =

tH
θH(1− θH)

.

Substituting and simplifying, we have

dVL

dθH
=

λθL
θ2H

% tH

0

exp(−(ρ+
λ

θH
)t) dt− λθL

θ2H
exp(−(ρ+

λ

θH
)tH)tH + λ(

θH − θL
θH

)

% tH

0

exp(−(ρ+
λ

θH
)t)

λ

θ2H
tdt.

Noting that the last integral is strictly positive, we have

dVL

dθH
>

λθ

θ2H
[

% tH

0

exp(−(ρ+
λ

θH
)t) dt− exp(−(ρ+

λ

θH
)tH)tH ] > 0,

where the last inequality follows because exp(−(ρ + λ/θH)t) is a decreasing function, and

thus, its average value on interval [0, tH ] is larger than its value at the right endpoint. Because

(i) VL is increasing in θH , (ii) θH = θ ⇒ VL = V , and (iii) θH > θL, we have that in the one

stage auditing equilibrium VL > V .

Proof of Proposition 1.2. We construct a two stage equilibrium, consistent with Lemma 1.1,

showing that such an equilibrium exists if and only if ν < (1− φ
"φ
)(1− exp(−ρtH)), and that

the only such equilibrium is the one characterized in the statement of the proposition. To

this end, consider the two phase structure, characterized by Lemma 1.1 with !tU > 0.

Strategies and Phase Transitions. From Lemma 1.1, in phase 1, we have aL(t) ∈ (0, 1), and

hence

µ(t) = µL ⇒ F (t) =
1

σ
(1− exp{−µLt}),

where use has been made of the fact that F (0) = 0 (i.e., F (·) has no mass point) which

allows us to determine that the integration constant in the solution is 1.
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For the acceptance strategy in phase 1, we substitute aU(t) = (1 − ν)aL(t) into the agent’s

indifference condition to obtain

(1− ν)a′L(t)− ρ(1− ν)aL(t) + φ(ρ+ λ) = 0.

Solving, with boundary condition aL(!tU) = 1, we have

aL(t) = (
1

1− ν
)
φ

"φ
+ (1− (

1

1− ν
)
φ

"φ
) exp{−ρ(!tU − t)}

= (
1

1− ν
)[
φ

"φ
+ (1− φ

"φ
− ν) exp{−ρ(!tU − t)}].

From Lemma 1.1, in phase 2, we have aH(t) ∈ (0, 1), and hence,

µ(t) = µH ⇒ F (t) =
1

σ
(1− κ2 exp{−µHt}),

where κ2 is an integration constant. From the boundary condition F (tU) = 1 we have

1

σ
(1− κ2 exp{−µHtU}) = 1 ⇒ κ2 = (1− σ) exp{µHtU}.

Note that κ2 > 0. Thus, F (·) is increasing in the second phase.

The differential equation for the agent’s indifference condition in phase 2 is identical to the

differential equation for the indifference condition in the one phase equilibrium, characterized

in Proposition 1.1. Following the same argument with boundary condition aH(tU) = 1, we

have

aH(t) =
1

ν

#φ
"φ
+ (1− φ

"φ
) exp{−ρ(tU − t)}− (1− ν)

$
.

To determine the phase transitions, !tU , tU , we use continuity of F (·) at !tU , and the boundary

condition aH(!tU) = 0, both of which come from Lemma 1.1.

1

σ
(1− exp{−µL

!tU}) =
1

σ
(1− (1− σ) exp{µH(tU − !tU)})

1

ν

#φ
"φ
+ (1− φ

"φ
) exp{−ρ(tU − !tU)}− (1− ν)

$
= 0

Solving, we have

!tU = tL − µH

µL

δU tU = tL + (1− µH

µL

)δU ,

where δU = − ln(1 − ν"φ
"φ−φ

)/ρ. Note that for this system to have any solution, we must

have ν < 1 − φ/"φ, so that δU is well-defined. Additional details are available in the Online

Supplement.
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Thus, we have a unique candidate for the two stage equilibrium. This candidate is indeed

an equilibrium if and only if !tU > 0.

Claim 1. We show that !tU > 0 ⇐⇒ ν < (1− φ
"φ
)(1− exp{−ρtH}). Note that

!tU > 0 ⇐⇒ tL >
µH

µL

δU ⇐⇒ tH > δU ⇐⇒ −ρtH < ln(1− ν"φ
"φ− φ

) ⇐⇒

exp{−ρtH} < 1−
"φν

"φ− φ
⇐⇒ ν < (1− φ

"φ
)(1− exp{−ρtH}).

It follows that the two stage equilibrium exists when ν < (1− φ
"φ
)(1−exp{−ρtH}), and in this

equilibrium the strategies and phase transitions are the ones given in the proposition. One

additional claim is made in the phase transitions part of the proposition, which we verify.

Claim 2. We show that if ν < (1 − φ
"φ
)(1 − exp{−ρtH}), then tU < tH . From claim 1, for

such ν we have

!tU > 0 ⇒ tL >
µH

µL

δU ⇒ tH > δU ⇒ tH(1−
µH

µL

) > (1− µH

µL

)δU ⇒

− ln(1− σ)
µL − µH

µHµL

> (1− µH

µL

)δU ⇒ − ln(1− σ)(
1

µH

− 1

µL

) > (1− µH

µL

)δU ⇒

tH − tL > (1− µH

µL

)δU ⇒ tH > tL + (1− µH

µL

)δU = tU

Claim 3. We show that κ2 = (1 − σ) exp{µHtU} = exp{−(µL − µH)!tU}. Consequently, the

agent’s strategy can be written as stated in the proposition. Note that

µHtU + ln(1− σ) = µH(−
ln(1− σ)

µL

+ (1− µH

µL

)δU) + ln(1− σ) =

(1− µH

µL

) ln(1− σ) + µH(1−
µH

µL

)δU =

(µL − µH)(
ln(1− σ)

µL

+
µH

µL

δU) = −(µL − µH)!tU .

The claim follows by applying exp(·) to both sides of the equation.

Beliefs. Follows immediately from Lemma 1.1 and the principal’s sequentially rational ac-

ceptance decision.

Payoffs. The strategic agent is indifferent about submitting a fake at all times inside the

phase of doubt, and thus, the agent’s payoff is the payoff of submitting a fake at time zero.

Thus, the strategic agent’s payoff is

aU(0)− φ = (1− ν)aL(0)− φ =
φ

"φ
+ (1− φ

"φ
− ν) exp(−ρ!tU)− φ.
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The high type principal either rejects or mixes at all times t ∈ [0, tU). Thus, the high type

principal’s payoff is

VH = (1− θH)(1− σ)

% ∞

tU

λ exp{−(ρ+ λ)t}dt.

To calculate the low type principal’s payoff, note that the low type mixes in phase 1, and

accepts in phase 2. Thus, the low type’s payoff is

VL =

% tU

!tU
exp(−(ρ+λ)t)(λ(1−σF (t))(1−θL)−σf(t)θL)dt+(1−θL)(1−σ)

% ∞

tU

λ exp(−(ρ+λ)t)dt

where F (·) and f(·) are the agent’s CDF and PDF of the agent’s mixed strategy. From the

equilibrium characterization, we have (1 − σF (t)) = (1 − σ) exp(µH(tU − t)) and σf(t) =

(1− σ)µH exp(µH(tU − t)), which implies that the low type principal’s payoff is

(1− σ) exp(µHtU)

% tU

!tU
exp(−(ρ+

λ

θH
)t)(λ(1− θL)− µHθL)dt+ (1− θL)(1− σ)

% ∞

tU

λ exp(−(ρ+ λ)t)dt =

(1− σ) exp(µHtU)(1−
θL
θH

)

% tU

!tU
λ exp(−(ρ+

λ

θH
)t)dt+ (1− θL)(1− σ)

% ∞

tU

λ exp(−(ρ+ λ)t)dt

Using Claim 3 to simplify the leading term, we have

exp(−(µL − µH)!tU)(1−
θL
θH

)

% tU

!tU
exp(−(ρ+

λ

θH
)t)dt+ (1− θL)(1− σ)

% ∞

tU

λ exp(−(ρ+ λ)t)dt.

Normative Comparison. That the high type principal strictly benefits from opaque standards

in this equilibrium follows immediately from tU < tH , proved in Claim 2.

We prove that the low type principal’s payoff is higher in the two stage equilibrium than in

the baseline model in three steps.

In Step 1 we show that there exists !σ such that the two stage equilibrium obtains iff σ > !σ
and that the low type principal’s payoff in the two stage equilibrium approaches her payoff

in the 1-phase equilibrium as σ ↓ !σ. Because we showed above that the principal’s payoff is

strictly higher in the one stage opaque standards equilibrium than in the baseline model, we

conclude that there exists ε > 0 such that her payoff in the two stage auditing equilibrium

is also higher than in the baseline model for all σ ∈ (!σ, !σ + ε).

In Step 2 we show that if the low type principal’s payoff is higher in the 2-stage equilibrium

than in the baseline model for any value of σ, then it is higher for all larger values as well.

In Step 3, we combine Steps 1 and 2 to show that the principal’s payoff is higher in the two

stage equilibrium than in the baseline model.

Step 1: We show that for any σ such that the two stage equilibrium exists, there exists

19



σ′ < σ such that (i) the two stage equilibrium exists at σ′, and (ii) at σ′ the principal’s

payoff in the two stage equilibrium is higher than her payoff in the baseline model.

Consider parameters at which the two stage equilibrium exists; by Proposition 1.2, we have

ν < ν∗. Note that

ν < ν∗ = (1− φ

"φ
)(1− exp(−ρtH)) ⇐⇒ ν < 1− φ

"φ
and tH is sufficiently large.

Recalling that tH is monotone increasing in σ, we have that the two stage equilibrium exists

whenever ν < 1− φ
"φ
and σ > !σ, for some !σ ∈ (0, 1). By implication, if σ > !σ, then the two

stage equilibrium exists for all σ ∈ (!σ, σ).

Next, we argue that as σ ↓ !σ, the low type principal’s payoff in the two stage equilibrium

approaches her payoff in the one stage equilibrium. Note that in the two stage equilibrium,

the low type principal’s payoff is

VL =exp(−(µL − µH)!tU)(1−
θL
θH

)

% tU

!tU
exp(−(ρ+

λ

θH
)t)dt+ (1− θL)(1− σ)

% ∞

tU

λ exp(−(ρ+ λ)t)dt.

A straightforward modification of Claim 1 shows that as σ ↓ !σ, we have !tU ↓ 0. By implica-

tion, tL → µH

µL
δU , and hence tH → δU . Furthermore tU = tL + (1− µH

µL
)δU . Substituting, we

have tU → δU . Combining, we have tU → tH . By routine simplification, as σ ↓ !σ, the low

type principal’s payoff in the two stage equilibrium approaches

(1− θL
θH

)

% tH

0

λ exp(−(ρ+
λ

θH
)t)dt+ (1− θL)(1− !σ)

% ∞

tH

λ exp(−(ρ+ λ)t)dt,

which is the low type principal’s payoff in the one phase equilibrium that obtains at !σ. From
Proposition 1.1, this payoff strictly exceeds the low type principal’s payoff in the baseline

model. By implication, there exists ε > 0 such that for an σ′ ∈ (!σ, !σ + ε), the low type

principal’s payoff in the two stage equilibrium at σ′ strictly exceeds her payoff in the baseline

model. Hence, for any σ > !σ, there exists σ′ ∈ (!σ, σ) at which the low type principal’s payoff

in the two stage equilibrium is higher than her payoff in the baseline model.

Step 2: Consider σ > !σ. We show that if the principal’s payoff is higher in the two stage

equilibrium with auditing than in the baseline model at σ, then the same is true for all

σ′′ > σ.

Consider the payoff difference between the two stage equilibrium and the baseline model,

exp(−(µL − µH)!tU)(1−
θL
θH

)

% tU

!tU
exp(−(ρ+

λ

θH
)t) dt

+ (1− θL)(1− σ)

-% ∞

tU

λ exp(−(ρ+ λ)t) dt−
% ∞

tL

λ exp(−(ρ+ λ)t) dt

.
.
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We simplify the previous expression in order to isolate σ. To keep the exposition organized,

we proceed line-by-line.

We simplify the first line.

exp(−(µL − µH)!tU)(1−
θL
θH

)[exp(−(ρ+
λ

θH
)!tU)− exp(−(ρ+

λ

θH
)tU)].

Note that

−(µL − µH) = −λ
θH(1− θL)− θL(1− θH)

θHθL
= −λ

θH − θL
θHθL

=
λ

θH
− λ

θL
.

Substituting, and using tU = !tU + δU , we have

exp(−(ρ+
λ

θL
)!tU)(1−

θL
θH

)[1− exp(−(ρ+
λ

θH
)δU)].

Using !tU = tL − µH

µL
δU , we have

exp(−(ρ+
λ

θL
)tL) exp((ρ+

λ

θL
)
µH

µL

δU)(1−
θL
θH

)[1− exp(−(ρ+
λ

θH
)δU)].

Substituting the definition of tL, the first line is

(1− σ)
(ρ+ λ

θL
)

θL
λ(1−θL) exp((ρ+

λ

θL
)
µH

µL

δU)(1−
θL
θH

)[1− exp(−(ρ+
λ

θH
)δU)] =

(1− σ)
ρθL+λ

λ(1−θL) exp((ρ+
λ

θL
)
µH

µL

δU)(1−
θ

θH
)[1− exp(−(ρ+

λ

θH
)δU)] =

κ1(1− σ)
ρθL+λ

λ(1−θL) ,

where κ1 ≡ exp((ρ+ λ
θL
)µH

µL
δU)(1− θL

θH
)[1− exp(−(ρ+ λ

θH
)δU)] is independent of σ.

Next, we simplify the second line.

(1− θL)(1− σ)[

% ∞

tU

λ exp(−(ρ+ λ)t) dt−
% ∞

tL

λ exp(−(ρ+ λ)t) dt] =

(1− θL)(1− σ)

% tL

tU

λ exp(−(ρ+ λ)t) dt = (1− θL)(1− σ)
λ

λ+ ρ
[exp(−(ρ+ λ)tU)− exp(−(ρ+ λ)tL)].

Substituting tU = tL + (1− µH

µL
)δU , we have

(1− θL)(1− σ)
λ

λ+ ρ
exp(−(ρ+ λ)tL)[exp(−(ρ+ λ)(1− µH

µL

)δU)− 1].

Note that

(1− σ) exp(−(ρ+ λ)tL) = exp(1− (ρ+ λ)
θL

λ(1− θL)
) ln(1− σ)) =

exp(−(ρ+
λ

θL
)(− θL

λ(1− θL)
) ln(1− σ)) = exp(−(ρ+

λ

θL
)tL).
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Continuing the simplification,

(1− θL)
λ

λ+ ρ
exp(−(ρ+

λ

θL
)tL)[exp(−(ρ+ λ)(1− µH

µL

)δU)− 1]

(1− θL)
λ

λ+ ρ
[exp(−(ρ+ λ)(1− µH

µL

)δ)− 1](1− σ)
ρθL+λ

λ(1−θL) =

κ2(1− σ)
ρθL+λ

λ(1−θL) ,

where κ2 ≡ (1− θL)
λ

λ+ρ
[exp(−(ρ+λ)(1− µH

µL
)δU)−1] is independent of σ. Combining terms,

the payoff difference as a function of σ is simply

(κ1 + κ2)(1− σ)
ρθL+λ

λ(1−θL) .

Therefore, the payoff difference is positive if and only if κ1 + κ2 > 0. Thus, if the payoff

difference is positive for some value of σ > !σ, then it is also positive for σ′′ ∈ (σ, 1].

Step 3. We show that the low type principal’s payoff is higher in the two stage equilibrium

than in the baseline model. Consider σ > !σ. From Step 1, there exists σ′ ∈ (!σ, σ) such that

the principal’s payoff in the two stage equilibrium at σ′ is higher than in the baseline model.

Applying Step 2, the low type principal’s payoff in the two stage auditing equilibrium at

σ > σ′ is also higher than in the baseline model.

A.2 Proofs for Logjam

Proof of Lemma 2.1. Step 1. Let S ≡ {t : a(t) < a(t)}. We show that S is an open set, i.e.

S is a countable union of open intervals S = ∪ (tk, tk+1).

Consider some t such that a(t) < a(t), i.e. the constraint is slack. By implication, we must

have g(t) = θ, and hence f(t) > 0.

If there exists a small δ > 0 such that a(t′) < a(t′) for all t′ ∈ (t− δ, t+ δ), then the set S is

open, and the claim is established. To derive a contradiction, suppose that for all δ > 0, there

exists some t′ ∈ [t− δ, t+ δ] such that a(t′) = a(t′). Let ε ≡ exp(−(ρ+ λ)t)(a(t)− a(t)) > 0

and let ε ≡ ε/4. From a(·) ∈ [φ, 1) and continuity of exponential, there exists some δ′ > 0

such that the following conditions hold for t′ ∈ (t− δ′, t+ δ′),

−ε ≤
% t

t′
λ exp(−(ρ+ λ)s)a(s)ds ≤ ε

−ε ≤ (exp(−(ρ+ λ)t)− exp(−(ρ+ λ)t′))(a(t′)− φ) ≤ ε

−ε ≤ exp(−(ρ+ λ)t)(a(t)− a(t′)) ≤ ε.
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Furthermore, by assumption, there exists some t′ ∈ [t− δ′, t+ δ′] such that a(t′) = a(t′).

u(t)− u(t′) =

% t

t′
λ exp(−(ρ+ λ)s)a(s)ds+ (exp(−(ρ+ λ)t)− exp(−(ρ+ λ)t′))(a(t′)− φ)+

exp(−(ρ+ λ)t)[a(t)− a(t′)− (a(t)− a(t)].

It follows that u(t)− u(t′) ≤ 3ε− ε̄ = − ε̄
4
, which contradicts f(t) > 0.

Step 2. We show that a(·) is continuous at all t ≥ 0.

First (1), consider t ∈ S, i.e. a(t) < a(t). From Step A we have that (t − δ, t + δ) ∈ S for

some δ > 0, and hence, f(t′) > 0 for all t′ ∈ (t − δ, t + δ). By implication, u(t) − u(t′) = 0

for all t′ ∈ (t− δ, t+ δ). It follows that for all such t′,

% t

t′
λ exp(−(ρ+ λ)s)a(s)ds+ (exp(−(ρ+ λ)t)− exp(−(ρ+ λ)t′)(a(t)− φ)+

exp(−(ρ+ λ)t′)(a(t)− a(t′)) = 0.

Taking the limit as t′ → t, we find a(t)− limt′→t a(t
′) = 0, establishing continuity at t.

Second (2), consider t such that a(t) = a(t), and assume that t is in the interior of SC , i.e.

there exists a small δ such that for all t′ ∈ (t − δ, t + δ), we have a(t′) = a(t′). In this case

continuity of a(·) at t follows immediately from continuity of a(·) on interval (t− δ, t+ δ).

Third (3), consider t such that a(t) = a(t), and assume that t is on the boundary of S, so

that in any interval (t−δ, t+δ) there exists some t′δ such that a(t′δ) < a(t′δ) and some t′′δ such

that a(t′′δ) = a(t′′δ). We will show that for a sufficiently small δ, we have |a(t) − a(t′)| < ε,

whenever t′ ∈ (t− δ, t+ δ), regardless of whether t′ ∈ S or t′ ∈ SC .

(i) Consider t′ ∈ SC . From continuity of a(·) at t, we know that for any ε > 0 there exists

δC such that |a(t)− a(t′)| < ε for any t′ ∈ (t− δC , t+ δC).

(ii) Consider t′ ∈ S, i.e. a(t′) < a(t′). We have

u(t′)− u(t) =

% t′

t

λ exp(−(ρ+ λs))a(s)ds+ (exp(−(ρ+ λ)t′)− exp(−(ρ+ λ)t))(a(t′)− φ)

+ exp(−(ρ+ λ)t)(a(t′)− a(t)).

Because a(·) ∈ (φ, 1) and the exponential is continuous and a(·) is continuous, some δS > 0

exists such that the following inequalities hold for all t′ ∈ (t− δS, t+ δS):

% t′

t

λ exp(−(ρ+ λs))a(s)ds ≤ ε

2
exp(−(ρ+ λ)t),

(exp(−(ρ+ λ)t′)− exp(−(ρ+ λ)t))(a(t′)− φ) ≤ ε

2
exp(−(ρ+ λ)t),
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Recall that t′ ∈ S, and hence f(t′) > 0. For such t′, we have

0 ≤ u(t′)− u(t) ≤ exp(−(ρ+ λ)t)(ε+ a(t′)− a(t)),

and hence a(t)− a(t′) ≤ ε.

(iii) Next, note that a(t)− a(t′) ≥ a(t)− a(t′) ≥ −ε for t′ ∈ (t− δC , t+ δC).

Let δ∗ = min{δC , δS}, and consider t′ ∈ (t − δ∗, t + δ∗). If t′ ∈ SC , then |a(t) − a(t′)| =
|a(t) − a(t′)| < ε, from (i). If t′ ∈ S, then (ii) implies that a(t) − a(t′) ≤ ε and (iii) implies

a(t)− a(t′) ≥ −ε, and hence, |a(t)− a(t′)| < ε. It follows that a(·) is continuos at t.

Points (1)-(3) establish continuity of a(·) at all t in the interior of S, the interior of SC , and

the boundary of S, thereby proving the result.

Step 3. We show that u(·) is continuous. For any t, t′ we have

u(t′)− u(t) =

% t′

t

λ exp(−(ρ+ λs))a(s)ds+ (exp(−(ρ+ λ)t′)− exp(−(ρ+ λ)t))(a(t′)− φ)

+ exp(−(ρ+ λ)t)(a(t′)− a(t)).

Taking the limit as t → t′ and using the continuity of a(·) yields the result.

Step 4. Suppose that for t ∈ (tL, tH) we have a(t) = a(t), where tH < t∗. We show that u(·)
is strictly increasing on (tL, tH). After substituting a(·) = a(·) to calculate u(·), the result

follows from straightforward differentiation.

Definition. Let u∗ ≡ maxt u(t).

Step 5. We show that if t′ < t < t∗ and u(t) < u∗, then u(t′) < u∗. Consider X = {t′′ ∈
[0, t′] : u(t′′) = u∗}. If X is empty, then the result holds. By way of contradiction, suppose X

is nonempty. Set X has an upper bound, and therefore it has a least upper bound, denoted

T . Continuity of u(·) (Step 3) implies (1) u(T ) = u∗, and (2), that T < t. It follows that

for all t′ ∈ (T, t), we have u(t′) < u∗ and thus, f(t′) = 0. Therefore, for all such t′, we

have a(t′) = a(t′). Using Step 4, we have that u(·) is strictly increasing on (T, t), and hence

u(T ) < u(t) < u∗, resulting in a contradiction.

Step 6. Suppose that for t ∈ (tL, tH) we have a(t) = a(t), where tL > t∗. We show that u(·)
is strictly decreasing on (tL, tH). Similar to Step 4.

Step 7. We show that if t∗ < t < t′ and u(t) < u∗, then u(t′) < u∗. Similar to Step 5.

Step 8. There exist !tJ , tJ with 0 ≤ !tJ ≤ t∗ ≤ tJ ≤ ∞ such that (1) u(t) < u∗ for t ∈ [0,!tJ),
(2) u(t) = u∗ for t ∈ [!tJ , tJ ], (3) u(t) < u∗ for t ∈ (tJ ,∞). Follows from Steps 5 and 7.

Step 9. We show that if t ∈ (!tJ , tJ) then a(t) < a(t) and f(t) > 0. From Step 8, we know

that u(t) = u∗ for t ∈ (!tJ , tJ). Following a similar argument to the one in Lemma 4.1 it is
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possible to show that a(·) is differentiable on this interval, and that

a′(t) = ρ(a(t)− φ

"φ
) ⇒ a(t) =

φ

"φ
+ κ exp(ρt).

Suppose t′ ∈ (!tJ , tJ) and a(t′) = a(t′). We consider two cases. (1) If κ ≤ 0, then a(t) is

weakly decreasing. Thus, a(t′) = a(t′) implies a(t′′) ≥ a(t′) for t′′ ∈ (!tJ , t′). By assumption

a(t′) = a(t′) > a(t′′), where the last inequality follows because a(t) is a strictly increasing

function. Thus, we have shown a(t′′) > a(t′′), violating the constraint. (2) If κ > 0, then a(·)
is a strictly increasing convex function on (!tJ , tJ). Recall that a(·) is a strictly increasing

concave function. If a′(t′) < a′(t′), then the constraint a(·) ≤ a(·) is violated in a small

interval (t′ − δ, t′). Similarly if a′(t′) > a′(t′) then the constraint is violated in a small

interval (t′, t′+ δ). Finally if a′(t′) = a′(t′), then a(·) and a(·), can be separated by a tangent

line at t′, and hence a(·) > a(·) around t′, violating the constraint. Thus, we have shown

that t′ ∈ (!tJ , tJ) ⇒ a(t′) < a(t′). By implication g(t′) = θ, and hence f(t′) > 0.

Step 10. We show (1) if !tJ > 0, then a(t) = a(t) for t ∈ [0,!tJ ], and (2) if tJ < ∞ then

a(t) = a(t) for t ∈ [tJ ,∞). From Step 8, we know that u(t) < u∗ on intervals [0,!tJ) and

(tJ ,∞). Thus, f(t) = 0 on such intervals, and consequently, a(·) = a(·). By continuity of

a(·) at !tJ , tJ , we have a(ti) = a(t̄i) for i ∈ {H,L}.

Step 11. We show that tJ < ∞. Suppose that tJ = ∞. From Step 9, we have a(t) < a(t) for

t ∈ (!tJ , tJ). Thus, for t → ∞ we have g(t) = θ, and hence f(t) = µ(1−σF (t)) ≥ µ(1−σ) > 0.

It follows that F (t) → ∞ as t → ∞.

Step 12. We show that !tJ < tJ . Suppose !tJ = tJ . Combined with the conditions !tJ ≤ t∗ ≤ tJ ,

we have !tJ = t∗ = tJ . Because φ/φ̂ < 1, we have t∗ > 0. From Step 8, u(t) < u∗ for t ∕= t∗.

Thus, for t ∕= t∗ we have a(t) = a(t), and by continuity of a(·), the same is true at t∗.

A straightforward calculation reveals that the agent’s optimal cheating time t∗, and thus

g(t∗) = 0. By implication a(t∗) = 0, contradicting continuity of a(·).

Step 13. We show that a(·) is increasing. From Step 12, we know that !tJ < tJ . From Step 8

we know that u(t) = u∗ on [tL, tH ]. Using the agent’s indifference condition, we have a(t) =

φ/φ̂+ κ exp(ρt). Thus, a(·) is either strictly increasing, strictly decreasing, or monotone on

this interval. Next, note that whether tJ > 0 or tJ = 0, we have a(tJ) ≤ a(tJ) < a(tJ),

where the last inequality follows from Step 12 combined with the fact that a(·) is strictly

increasing. Furthermore, from Steps 10 and 11 we have a(tJ) = a(tJ) for some tJ ∈ (!tJ ,∞).

Thus, we have shown that a(!tJ) < a(tJ). Since the monotonicity of a(·) does not change on

(!tJ , tJ), it must be increasing on this interval. Applying Step 10, it follows that outside this

interval a(t) = a(t), which is itself an increasing function.

Step 14. We show that !tJ > 0. Suppose !tJ = 0. Using Step 9, we have a(0) < a(0) =
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γ/(γ + ρ) < φ

φ̂
. The agent’s indifference condition on [!tJ , tJ ] implies a(t) = φ/φ̂+ κ exp(ρt).

Thus, a(0) < φ/φ̂ implies κ < 0. By implication, a(·) is decreasing on (!tJ , tJ), contradicting
Step 13.

Step 15. We show that !tJ < t∗; that tJ > t∗ is proved in a similar way. Suppose that

!tJ = t∗. We know that tJ > !tJ . From the agent’s indifference condition on [!tJ , tJ ], we have

a(t) = φ/"φ+ κ exp(ρt). Combined with Step 10, we have

φ

"φ
+ κ exp(ρt∗) = 1− ρ

ρ+ γ
exp(−γt∗).

From the definition of t∗, we have

φ

"φ
+ κ exp(ρt∗) = 1− ρ

ρ+ γ
(1− φ

"φ
) ⇒ κ exp(ρt∗) =

γ

γ + ρ
(1− φ

"φ
).

Next, consider the derivative of a(·) and a(·) at t∗. We have

a′(t∗) = ρκ exp(ρt∗), a(t∗) =
ργ

ρ+ γ
exp(−γt∗) ⇒

a′(t∗) =
ργ

γ + ρ
(1− φ

"φ
), a(t∗) =

ργ

ρ+ γ
(1− φ

"φ
) ⇒

a′(t∗) = a(t∗).

Because (1) a(·) is increasing and convex (2) a(·) is increasing and concave, (3) a(t∗) = a(t∗)

and (4) a′(t∗) = a′(t∗), we have a(·) > a(·) for t ∈ (t∗, tJ), violating the logjam constraint.

Proof of (i). That the agent’s mixing distribution has no mass points follows from continuity

of a(·) (Step 2). Combined, Steps 8, 11, 12, and 14 establish the rest of the claim.

Proof of (ii). Proved in Steps 2 and 13.

Proof of (iii). Follows from Steps 10-15.

Proof of (iv). Follows from Step 9 and 11-15.

Proof of Proposition 2.1. Strategies. Based on Lemma 2.1, there exist {!tJ , tJ} with 0 <

!tJ < t∗ < tJ < ∞ such that for t ∈ (!tU , tU), equilibrium strategies are characterized by the

differential equations µ(t) = µ and a′(t) − ρa(t) + φ(ρ + λ) = 0 with boundary conditions,

F (!tJ) = 0, F (tJ) = 1, a(!tJ) = a(!tJ),a(tJ) = a(tJ).. Solving the first differential equation

and boundary conditions, we have

F (t) =
1

σ
(1− exp(−µ(t− !tJ)), tJ = !tJ + t.

Solving the second differential equation, we have

a(t) =
φ

φ̂
+ κ exp(ρt),
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where κ is an integration constant. Thus, the remaining boundary conditions become

φ

φ̂
+ κ exp(ρ!tJ) = 1− ρ

ρ+ γ
exp(−γ!tJ)

φ

φ̂
+ κ exp(ρ(!tJ + t)) = 1− ρ

ρ+ γ
exp(−γ(!tJ + t)).

Solving, we have

κ = exp(−ρ!tJ)(a(!tJ)−
φ

"φ
),

exp(−γ!tJ) = (1− φ

"φ
)(1 +

γ

ρ
)

exp(ρt)− 1

exp(ρt)− exp(−γt)
.

Obviously, !tJ > 0 and tJ < ∞. That !tJ < t∗ < tJ follows from a straightforward ap-

plication of L’Hopital’s rule. Note that, if we solve the second equation for κ, we find

κ = exp(−ρtJ)(a(tJ) − φ
"φ
), which corresponds to the expression of the acceptance strategy

presented in the proposition.

Beliefs. Obvious.

Payoffs. The agent is indifferent between faking at all times inside [!tJ , tJ ], and therefore

his equilibrium payoff is u(!tJ) as stated in the proposition. In the next part of the proof,

we give a simpler expression for the agent’s equilibrium payoff. For the principal’s payoff,

not that an arrival inside (!tJ , tJ) delivers no surplus, while an arrival outside of this time

interval is known to be real, and is accepted with probability a(·), delivering payoff (1− θ).

Furthermore, an arrival comes at t > tJ only if the agent is ethical.

Normative Implications. Consider the principal’s payoff. Note that as σ → 1, we have

t → ∞, and hence,

!tJ → −1

γ
ln[(1− φ

"φ
)(1 +

γ

ρ
)] = −1

γ
ln(

1− φ
"φ

1− γ
γ+ρ

).

Under the maintained assumption that γ/(γ + ρ) < φ/"φ, this limit is strictly positive.

Therefore, with a logjam, the principal’s payoff is bounded away from zero as σ → 1, while

it converges to zero in the main model. Now consider σ → 0. We have t → 0. Using

L’Hopital’s rule,

exp(ρt̄)− 1

exp(ρt̄)− exp(−γt)
→ ρ

ρ+ γ
,

which in turn implies that !tJ → t∗, tJ → t∗. It follows that the principal’s payoff approaches

(1− θ)

% ∞

0

λ exp(−(λ+ ρ)t)a(t)dt < (1− θ)

% ∞

0

λ exp(−(λ+ ρ)t)dt,

which is the limit as σ → 0 in the main model.
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