Waiting for Fake News

Ralph Boleslavsky

MWET November 2023 To a cop, the explanation is ... always simple. If you got a dead body and you think the brother did it, you're gonna find out you're right.

-Verbal Kint, The Usual Suspects

Background

- In the US, the decision to file charges against a suspect is made by a local prosector, based on an investigation conducted by the police.
- Imagine that a long investigation has produced circumstantial evidence against suspect, but it has not produced direct evidence.
- The prosecutor and police officer agree on the interpretation of evidence, and both want to see justice done.
- When deciding whether to pursue case, prosecutor accounts for costs not borne by the police officer (opportunity cost, direct cost, reputation).
- Prosecutor hesitant to pursue the case based on inconclusive evidence. Needs to be more convinced that suspect is guilty.
- Extensive investigation uncovered no direct evidence, case closed soon

Background

If police officer sufficiently convinced by circumstantial evidence, he or she may be tempted to *fabricate* evidence of guilt

- Planting physical evidence
- Coercing false confession
- Misrepresenting or manipulating forensic analysis
- Procuring false witness testimony or identifications
- (all from National Registry of Exonerations) more
- When deciding whether to pursue the case, the prosecutor must consider the possibility that seemingly convincing evidence is actually *fake*.
- Affects the entire investigation

Introduction

- Study a novel dynamic model of information acquisition, in which information can be faked strategically.
- Characterize equilibria, study positive and normative distortions in information acquisition due to fabrication
- Study changes to search process that mitigate distortions
- Applications: prosecutorial discretion, venture capital investment, project development, product regulation

- Principal makes a single choice b/w safe, risky action
- Safe action, known payoff $\theta \in (0,1)$ (principal)
- Example 2 Risky action, uncertain payoff $\omega \in \{0,1\}$
- $\blacktriangleright \text{ Prior belief } \mu \equiv \Pr(\omega = 1)$
- \blacktriangleright Principal prefers safe under prior, $\mu < heta$
- \triangleright Principal can choose S/R at any time $t \ge 0$
- ▷ Game ends when she makes this choice
- $\triangleright\,$ May delay in order to acquire more information about $\omega\,$
- \triangleright Common discount rate ρ

- > Agent has no private info about ω
- $\,\,\,$ Same payoff from risky action, $\omega\in\{0,1\}$
- Smaller payoff from safe action $eta \in (0,\mu)$
 - No disagreement ex post, $\beta > 0$
 - Under prior, agent prefers risky, principal prefers safe
 - Also, β not too small (more in a few)
- Agent has privately known type.
- ▷ With prob. $\sigma \in (0, 1)$, agent is *manipulative* else *normal*
- Significance of agent type clear soon.

- Information about ω comes from a public news process.
- Single arrival of news at some time.
- Arrival may be *real news* or *fake news*.

Real news reports the payoff of the risky action

- \triangleright Real news is type-1 iff $\omega = 1$
- Example 2 Real news is type-0 iff $\omega = 0$
- Arrival time of real news uncertain.
- Arrival time drawn from continuous CDF $G(\cdot)$, density $g(\cdot)$, decreasing hazard rate $H_R(\cdot)$.
- > Arrival time of real news independent of ω (and A's type)
- If arrival time reached, real news instantly produced

Fake news produced strategically to influence principal

- Manipulative agent can fake a type-1 arrival at any time.
- Fake arrival looks real...
- Principal cannot observe or verify if type-1 news is real, she can only infer this from manipulative agent's strategy.
- Normal agent simply waits for game to end.
- Single arrival of news—decision to fake "irreversible."
- If officer decides to plant evidence against suspect, stops looking for alibi

Three helpful observations

- 1. Only one news arrival; instant decision after arrival.
- 2. Type-0 not faked. Principal selects safe.
- 3. News arrival time independent of ω .
 - Real news arrival time independent of ω
 - Fake news arrival time independent of ω (the agent is uninformed)
 - Nice feature: arrival time conveys no info about risky payoff, non-arrival has no effect on either player's belief about it

Autarky Benchmarks

- Autarky: all news is real, relevant player has authority over action/time.
- Each player follows the recommended action when news arrives
- Each player chooses how long to wait before selecting the "default action," safe for principal, risky for agent
- > Each player's payoff continuous, differentiable, single-peaked in waiting time

Autarky Benchmarks.

Optimal to wait until hazard rate reaches a threshold,

$$H_R(au_P) = rac{
ho heta}{\mu(1- heta)} \qquad H_R(au_A) = rac{
ho\mu}{eta(1-\mu)}$$

- Numerator is marginal cost of delaying default action
- Denominator is expected net benefit if default action overturned by news
- Both players want to search, default can be proved wrong
- Focus: $0 < \tau_P < \tau_A$, agent duration longer than principal
- $\succ \tau_P < \tau_A \iff \beta \text{ not too small, i.e., } \beta \in (\underline{\beta}, \mu)$
 - Ensures eq. shaped by disagreement over default action, streamlines analysis

Agent Strategy.

- Agent pure strategy is "faking time," $t \in \mathbb{R}_+$.
- If faking time reached with no decision, agent fakes an arrival at t.
- Agent can mix over faking times, CDF $F_A(\cdot)$.

Principal Strategy.

- Function $a(\cdot)$, probability of risky action if type-1 news arrives at time t.
- \triangleright Pure strategy, "exit time," $t\in\mathbb{R}_+$
- ▶ If exit time reached without news, stop search and select safe action
- > Principal can mix over exit times, CDF $F_P(\cdot)$

Payoffs.

- \triangleright $u_A(t)$ is expected payoff of faking time t, given $F_P(\cdot)$ and $a(\cdot)$
- $u_P(t)$ is expected payoff of exit time t, given $F_A(\cdot)$ and $a(\cdot)$
- ► Big integrals agent principal
- Key point: distortions from autarky
 - Principal: news might be fake.
 - Agent: principal might exit without news, safe following type-1 news

Equilibrium

Equilibrium Conditions (BNE)

- Agent Faking: $f_A(t) > 0 \Rightarrow t \in \operatorname{argmax}_x u_A(x)$
- > Principal Action: a(t) optimal given posterior belief $\mu_1(t)$ (all times).
- Consistency: $\mu_1(t)$ from Bayes' rule and agent strategy

Two varieties of equilibrium

- 1. Beneficial search, $u_P^* \ge \theta$ (focal)
- 2. Non-beneficial search, $u_P^* = \theta$

- Suppose principal "naive search," exit at τ_P and $a(\cdot)=1$
- At $t < \tau_P$, no distortions for agent.
- Agent payoff $u_A(t)$, same as first best, increasing for $t < \tau_P < \tau_A$
- Agent doesn't want to fake at $t < \tau_P$
- Principal doesn't want to exit at $t < \tau_P$
- \triangleright Virtuous Cycle: No faking \iff No early exit
 - ... breaks down at τ_P

- In naive search principal selects safe at τ_P without news
- Without news agent prefers risky
- Since $a(\cdot) = 1$, agent fakes type-1 news at τ_P to preempt safe
- If such faking expected by the principal, would ignore it, selecting safe. Agent preempts earlier.
- Agent preemption unravels search backwards from $\tau_{P...}$

Equilibrium Structure

- > Two small adjacent time periods, "Early" and "Late," both before au_P
- "Within period" agent decides whether to fake first.
- If no news arrives principal decides whether to exit, pick safe.
- If news, principal decides whether to follow it.
- Consider best responses loosely

Agent wants to preempt the principal's choice of safe
Wants to fake "just before" principal exits/picks safe

P Exit Early Exit Late A Fake Early * , , .. Fake Late ... , .. * , ..

Equilibrium Structure

- Principal considers value of future news
- If agent fakes late, then type-1 news in late period most likely fake. Whether arrives or not, picks safe. Not worth waiting for. Fake late \Rightarrow exit early.
- If agent fakes early and no arrival, then agent normal. Late news is real, more valuable, worth waiting for. Fake early \Rightarrow Exit late

Incentives resemble matching pennies...

- Search unravels stochastically from au_P
- Atoms of stopping and faking at τ_P under naive search "spread out" into interval $[\tau_M, \tau_P]$, with smooth mixing
- Beneficial search cannot unravel to 0, else $u_P^* = \theta$
- \triangleright Unraveling cannot leave atom fakes at τ_P , initial trigger for unraveling
- Can be atom of stops at τ_P . Agent preempts atom with probability 1

Proposition 1. If an equilibrium with beneficial search exists, then it has following structure. There exists $\tau_M > 0$ such that

- (i) the agent's faking time is drawn from a mixed strategy with no mass points or gaps, supported on $[\tau_M, \tau_P]$.
- (ii) the principal's exit time is drawn from a mixed strategy with no gaps, supported on interval $[\tau_M, \tau_P]$; only mass point on τ_P .
- (iii) the principal selects risky following type-1 news, a(t) = 1 for all $t \ge 0$.

Equilibrium Structure

Positive Implications

- Hard deadline, τ_P . If reached principal exits, selects safe.
- Soft deadline, τ_M . If reached, agent randomly fakes, and principal randomly exits in absence of news.
- Principal "disengages" from search at soft deadline; might exit any moment
- Agent becomes "anxious" at soft deadline that principal might exit and pick safe. Fakes news in order to preempt it.
- Even though principal disengaged, acts on type-1 news if arrives
- Future news informative enough to offset waiting cost. If not, stop now!
- ▷ To offset waiting cost, future news must be informative enough to follow.

Equilibrium Structure

Normative Implication

- Before τ_M , no faking/exit—like first best search
- In equilibrium players indifferent over all times in $[\tau_M, \tau_P]$.
- Equilibrium payoff as if each player exits/fakes at τ_M .
- Principal's payoff as if waits for real news until τ_M , then picks safe
- Agent's payoff as if waits for real news until τ_M , then picks risky
- As if each player does an autarkic search but cuts too early.

Equilibrium Structure

Equilibrium payoffs, Beneficial Search

Boleslavsky (2023): Waiting for Fake News

Beneficial Search (Proposition 2)

- Equilibrium with beneficial search exists if $\sigma < \bar{\sigma}(\theta, \mu)$.
- > At most one equilibrium with beneficial search exists
- Closed form characterization see it

Beneficial Search Equilibrium

Notable Features

- Always atom on τ_P for principal.
- Atom and $a(\cdot) = 1$, positive probability principal acts "naively"
- Informativeness of type-1 news non-monotone in time. Big drop at τ_M , recovers gradually, restored at τ_P
- > Increase in σ intensifies unraveling, reduces soft deadline, hurts both players
- If too big $(\sigma > \overline{\sigma})$, unravels to 0. No beneficial search.

Remedies

Commitment to Naive Search

- Suppose principal *commits* to act naively: select safe at τ_P if no news, act on all type-1 news that arrives, $a(\cdot) = 1$.
- \blacktriangleright Manipulative agent waits to fake until au_P
- No preemption incentive for agent. No unraveling (Yay!)
- But, if agent is manipulative, fakes type-1 at τ_P . Principal picks risky instead of safe (Boo!)
- Result: compared to beneficial search equilibrium, commitment to naive search generates improvement
 - "manipulative agent unlikely, let's pretend doesn't exist"
- P benefits from "plausible deniability" of faking, without accountability harmed by scrutiny

Remedies

Delegation to Intermediary

- More mild form of delegation: principal introduces an intermediary who has full authority over search/action
- lntermediary payoff from safe action θ_l (local)
- Game between intermediary and agent.
- Focus on (more interesting) case of beneficial search
- Smaller θ_I aligns incentives better, equilibrium "shifts up"
- ▶ Higher τ_M (Yay! more first best search)
- Intermediary has lower value of stopping than principal. If intermediary indifferent, principal wants to stop. Principal payoff decreasing over intermediary support (Boo!)

Delegating Down

Eq. Strategies, Delegation

Boleslavsky (2023): Waiting for Fake News

Delegating Down

Delegation Payoff

Boleslavsky (2023): Waiting for Fake News

Remedies

Delegation to Intermediary

- Result: compared to keeping authority herself, principal can benefit by delegating to an intermediary with a smaller θ_I
- Delegating charging decision to grand jury can be helpful, if less-concerned about prosecutor's opportunity costs
- Delegating to an expert who is a bit more concerned with "long term viability" than opportunity cost benefits VC.
- P tempted to stop search, not overrule action)

Thanks for your attention!

Agent Payoff

- Consider $u_A(t)$ agent's payoff from faking time t.
- Four ways the game can end

Time	Event	Prob/density	Payoff	Discount
s < t	Real Type-0	$w^{\mathcal{A}}_0(s)\equiv (1-\mu)g(s)(1-\mathcal{F}_{\mathcal{P}}(s))$	0	$\exp(- ho s)$
s < t	Real Type-1	$w^A_1(s)\equiv \mu g(s)(1-F_P(s))$	eta(1-a(s))+a(s)	$\exp(- ho s)$
s < t	P Stops	$w^{\mathcal{A}}_{S}(s)\equiv f_{\mathcal{P}}(s)(1-G(s))$	β	$\exp(- ho s)$
t	A fakes	$ ilde{W_{\phi}^{A}}(t)\equiv(1-G(t))(1-F_{P}(t))$	$eta(1-a(t))+\mu a(t)$	$\exp(- ho t)$

$$egin{aligned} &u_{A}(t) = \int_{0}^{t} \exp(-
ho s) \{w_{0}^{A}(s)eta + w_{1}^{A}(s)((1-a(s))eta + a(s)) + w_{S}^{A}(s)eta \} ds \ &+ \exp(-
ho t) W_{\phi}^{A}(t)((1-a(t))eta + \mu a(t)). \end{aligned}$$

- \triangleright $u_A(t)$ is expectation, based on above.
- Note that agent payoff different when real type-1 vs. fake.

Principal Payoff

Consider $u_P(t)$ agent's payoff from stopping time t.

Time	Event	Prob/density	Payoff	Discount
s < t	Real Type-0	$w^P_0(s)\equiv (1-\mu)g(s)(1-\sigma \mathcal{F}_{\mathcal{A}}(s))$	0	$\exp(- ho s)$
s < t	Real Type-1	$w^{\mathcal{P}}_{1\mathcal{R}}(s)\equiv \mu g(s)(1-\sigma \mathcal{F}_{\mathcal{A}}(s))$	$ heta(1-a(s))+a(s)\mu_1(s)$	$\exp(- ho s)$
s < t	Fake Type-1	$w^P_{1F}(s)\equiv \sigma f_P(s)(1-G(s))$	$ heta(1-a(s))+a(s)\mu_1(s)$	$\exp(- ho s)$
t	P Stops	$W^P_\phi(t)\equiv (1-{\cal G}(t))(1-\sigma {\cal F}_{A}(t))$	heta	$\exp(- ho t)$

Principal cannot observe whether type-1 is real or fake. Both type-1's in a single information set. $w_1^P(s) = w_{1R}^P(s) + w_{1F}^P(s)$ and $\mu_1(s) \equiv \Pr(\omega = 1|$ type-1 at $s) = w_{1R}^P(s)/w_1^P(s)$.

$$u_{P}(t) = \int_{0}^{t} \exp(-\rho s) \{w_{0}^{P}(s)\theta + w_{1}^{P}(s)((1 - a(s))\theta + a(s)\mu_{1}(s))\} ds + \exp(-\rho t)W_{\phi}^{P}(t))\theta$$

 \triangleright $u_P(t)$ is expectation, based on above. ^{back}

Equilibrium Characterization

$$egin{aligned} &F_{A}(t)=rac{1}{\sigma}\Big(1-\exp\{-\int_{ au_{M}}^{t}rac{\mu(1- heta)H_{R}(s)-
ho heta}{ heta-\mu}ds\}\Big)\ &t\in[au_{M}, au_{P})\Rightarrow F_{P}(t)=1-\exp\{-\int_{ au_{M}}^{t}rac{eta(1-\mu)H_{R}(s)-
ho\mu}{\mu-eta}ds\},\ &F_{P}(au_{P})=1. \end{aligned}$$

 τ_M is unique solution to

$$1 - \exp\{-\int_{\tau_M}^{\tau_P} \frac{\mu(1-\theta)H_R(s) - \rho\theta}{\theta - \mu} ds\} = \sigma.$$

Note $\tau_M > 0$ if $\sigma < \bar{\sigma}$,

$$ar{\sigma}\equiv 1-\exp\{-\int_{0}^{ au_{P}}rac{\mu(1- heta)H_{R}(s)-
ho heta}{ heta-\mu}ds\}.$$

In a widening scandal that has rocked the New York State Police, a lieutenant who supervised criminal investigations in seven upstate counties admitted yesterday that he had faked fingerprint evidence in three cases...

Taken together, yesterday's events painted a picture of almost routine fabrication of evidence in criminal cases

-New York Times, July 30 1993

In any reasonable mind, a serious question of how that stain and single hair came to be found in the car is raised... the possibility of [the evidence being planted] is very real and raises doubts about the credibility of the evidence and the police

-West Virginia Supreme Court, July 1992 back