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Introduction

Classic signaling game, (Fudenberg and Tirole pp. 324-5)

◮ Nature selects a state ω ∈ Ω according to prior distribution µ0.

◮ Sender observes ω, selects action s ∈ S .

◮ Receiver observes s but not ω, chooses a ∈ A.

◮ Payoffs: sender v(ω, s, a), receiver u(ω, s, a).

◮ Simplification: |Ω| < ∞ and |S | < ∞.

◮ Applied to every topic under the sun.
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Introduction

Our version endows sender with commitment power.

◮ Sender commits to his strategy, π(s|ω) for all s ∈ S and ω ∈ Ω.

◮ Nature selects a state ω ∈ Ω according to prior distribution µ0.

◮ Sender’s action is realized from his strategy.

◮ Receiver observes s and π(·|·), but not ω. Chooses a ∈ A.

◮ Payoffs: sender v(ω, s, a), receiver u(ω, s, a).

◮ Commitment power can come from design of institutions, formal contracts,
reputation incentives, algorithms/AI.

◮ Alternate Interpretation: sender commits to a statistical experiment on
state, payoffs depend directly on realization of experiment
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Contribution

Theory

◮ Study problem using the “belief-based” approach

◮ Geometric characterization of sender’s attainable payoffs

◮ Characterize “extended commitment”: communication protocol and action

Applications

◮ Rating Design: “exploiting credulity” vs. “costly lies”

◮ Platform Design: “steering” vs. “information provision”
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Example

Adjudication.

◮ Grievances arise in organization, valid ω = v , or invalid ω = f

◮ Prior belief: µ0 = Pr(ω = f ), generally µ is prob. of f

◮ Org. (sender) observes type of grievance, ω ∈ {v , f }
◮ Org. can address (s = a) or dismiss (s = d)

◮ Stakeholders observe decision, decide whether to retaliate

◮ Retaliate if believe org. made wrong decision...
◮ s = a → retaliate if µ > θa
◮ s = d → retaliate if µ < θd

◮ Confidentiality → only info about validity is org. decision
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Example

◮ Organization “stubborn,” prefers to dismiss, gains 1

◮ Wants to avoid retaliation, costs l ∈ (0, 1)

Retaliate Don’t
Dismiss 1-l 1
Address −l 0

◮ Stakeholders have limited sway, l < 1.

◮ Rather dismiss w/ retaliation than address (1− l > 0)

◮ No commitment: only sequentially rational strategy to dismiss
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Example

◮ Interim payoff : sender’s expected payoff when s ∈ S , common belief µ

◮ In this example,

!v(µ, d) = 1− lI(µ < θd)

!v(µ, a) = −lI(µ > θa).
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Example

µ

!v(·, d)

θd
0

1− l

1

−l

θa

!v(·, a)

Interim payoff graphs, belief µ ≡ Pr(ω = f )
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Example

◮ Sender strategy π(s|ω), for s ∈ {a, d} and ω ∈ {v , f }.
◮ Receiver beliefs {µa, µd}, determined by sender’s strategy.

◮ Each s ∈ {a, d} played with some probability

◮ Probability of µs determined by sender strategy, τ(µs).

◮ Law of Iterated Expectations (“Bayes-Plausibility”)

Eτ [µs ] = µ0 ⇐⇒ τ(µd)µd + τ(µa)µa = µ0

◮ If belief system is BP, some underlying sender strategy induces it

◮ Can work with beliefs {µa, µd} instead of strategy
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Example

◮ Value of belief system {µa, µd},

"v(µ0) = Eτ [!v(µs , s)] = τ(µd)!v(µd , d) + τ(µa)!v(µa, a).

◮ Sender looking for Bayes-Plausible belief system to maximize value

◮ “Geometric” observation:

(µ0, "v(µ0)) = Eτ [(µs , !v(µs , s))].

If first component averages to prior, second component averages to payoff.

◮ Can solve the sender problem graphically...
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Example
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Example
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Example
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Example
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Example
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Example
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Example
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Example
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Example
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Example

Characterization.

◮ Set of attainable payoffs: payoff graphs + all line segments connecting red
graph to blue graph.

◮ This set called the topological join of payoff graphs.

◮ Join envelope is its upper boundary, highest possible payoff at a prior belief

◮ Beliefs that are joined are optimal belief system

◮ Join envelope may be convex, generally not concave envelope
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Example

Adjudication.

◮ At moderate beliefs, organization commits to address some valid grievances
in order to deter retaliation.

◮ If prior too high, no retaliation anyway

◮ If prior too low, must address valid grievances too often, too costly

◮ At moderate prior, a low probability of (costly) remedy deters retaliation

◮ Optimal strategy magnifies stakeholders’ influence (at moderate priors).

◮ Must have some influence to begin with (l > 0).
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Theory

◮ First part of the theory generalizes the example.

◮ Results are direct extension.

◮ Sender interim payoff: !v(µ, s) = Eµ[v(ω, s, â(µ, s))]

◮ Graph the sender’s payoff functions for each actions s ∈ S , on domain ∆(Ω).

◮ Result: Set of attainable sender payoffs is topological join of these graphs, J .

◮ J is graphs + all line segments connecting different graphs

◮ Result: Optimal payoff at each prior is the join envelope,

V jo(µ0) = max{z | (µ0, z) ∈ J}.

◮ Result: Beliefs that are joined → optimal belief system
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Theory

Beer-Quiche Example.

◮ Tough Sender : 1 if Beer, 0 if Quiche

◮ Wimpy Sender : 1 if Quiche, 0 if Beer; cost c ∈ (0, 1) if bullied

◮ Receiver : 0 if leaves alone, 1− k if Bullies wimpy, −k if Bullies tough
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Theory

Beer-Quiche Example.

◮ Only separating eq without commitment, 1− c > 0.

◮ Let µ = Pr(tough). Receiver best response is Bully iff µ < k .

◮ Interim payoffs:

!v(µ,Quiche) = (1− µ)(1− cI(µ < k))

!v(µ,Beer) = µ− c(1− µ)I(µ < k)

◮ Interesting case, k < 1/2 and c > k/(1− k).
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Theory

µ

!v(·,Beer)

k

k

1− k

−c

1− c

!v(·,Quiche)
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Theory
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Theory

Beer-Quiche Example.

◮ Separating strategy optimal at low beliefs, µ0 < !µ.
◮ For µ0 ∈ (!µ, k), tough quiche and wimpy mixes.

◮ For µ0 > k tough mixes and wimpy brings quiche.

◮ Partial “reversal” of natural actions.

◮ Note: for µ ≤ k , interim payoff !v(µ,Quiche) > !v(µ,Beer).
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Theory

◮ Only source of info sender’s action

◮ Maybe prevented from sending extra info (adjudication, trading)

◮ Maybe sender action is a message (grading students, ratings)

◮ Other settings, sender may have more control over receiver’s information

◮ What would sender do? Is this beneficial for sender (or receiver)?
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Theory

◮ Extend sender’s commitment power.

◮ Along with action, sender commits to communication protocol

◮ Designs message space M and a joint distribution of public message and
action conditional on state π(m, s|ω).

◮ Transmits information with message, action, or both

◮ Result: Sender cannot increase payoff further by designing info structure.
Improvement requires changes in payoff functions, prior belief, or monitoring
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Theory

◮ Observing (m, s), Bayesian update µ(m, s)

◮ Strategy generates joint distribution of action and belief τ(µ, s).

◮ Decompose joint distribution, τ(µ, s) = τm(µ)τc(s|µ).
◮ The belief is Bayes-Plausible, Eτm [µ] = µ0.

◮ Result: A strategy induces joint τ(µ, s) iff marginal τm is Bayes-Plausible

◮ Separability: sender can design a Bayes-Plausible distribution of posteriors
τm(·), assign any action to each realized belief τc(·|µ).
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Theory

◮ Can connect any two points on payoff graphs

◮ Attain payoff in convex hull of union of graphs

◮ Result: max payoff is concave envelope of graphs

◮ Result: sender commits to select action from highest graph at each belief,

τc(s|µ) > 0 ⇒ !v(µ, s) ≥ !v(µ, s ′), for all s ′ ∈ S .

◮ Such action is belief-optimal. Optimal for sender given public belief ω ∼ µ.
May not be optimal if sender knows the realized state ω.
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Example
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Example

Adjudication.

◮ In adjudication example, suppose relax confidentiality, allow sender to
commit to communication protocol

◮ Sender always dismisses, uses public message to sometimes deter retaliation

◮ Undermines the adjudication process (want valid addressed)

◮ Rationale for confidentiality, beyond privacy concerns
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Theory

◮ To attain “extended commitment” payoff (highest possible), sender can...

1. Design an experiment that reveals public info before learning state
2. Delegate action to aligned but uninformed intermediary

◮ (1) allows sender to reveal information according to τm
◮ (2) ensures that at each realized belief, action on highest graph (belief-opt)

◮ Generally, commitment to communication protocol alone insufficient...
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Theory
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Theory
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Theory

◮ Concave envelope links (0, 1− c) and (k , 1− k), both on !v(·,Quiche).
◮ To achieve concave envelope, sender commits to split belief µ0 ∈ (0, k) into

{0, k} and select action Quiche.

◮ Without commitment, tough type always selects Beer.

◮ Commitment to action required to attain concave envelope, cannot be
attained with communication protocol alone.

Boleslavsky and Shadmehr (2024): Signaling w/ Commitment



Theory

◮ In some environments, concave envelope can be achieved without
commitment to communication protocol, only action.
◮ Suppose that sender designs a communication protocol, inducing τm
◮ At each realized posterior µ, sender plays optimal “signaling with

commitment” strategy, payoff V jo(µ).
◮ When designing τm, expects payoff V jo(·) at each belief.
◮ Implies that extended commitment payoff is concave envelope of V jo(·)

◮ Result: For all prior beliefs µ0 ∈ ∆(Ω), commitment to communication
protocol does not increase sender payoff if and only if V jo(·) is concave.

◮ Sufficient condition—all payoff graphs concave.
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Application: Financial Rating

Key Feature: nominal rating matters beyond information content

◮ Designer benefits directly from a favorable rating
◮ Financial analysts rewarded more for optimism than accuracy (literature)
◮ Professor gives ’A’ → student happy → good evals → Dean happy
◮ Quality certifier wants to preserve future business
◮ Naive receivers, manipulated into favorable responses (finance, hiring)

◮ Exaggeration costly
◮ Financial analysts may be sanctioned for manipulation
◮ Professor dislikes inflating grades of undeserving students
◮ Risky to certify unsuitable or dangerous product
◮ Aversion to self-serving lies, exploitation
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Application: Financial Rating

◮ An asset can be in a good or bad state, ω ∈ {1, 0}, prior µ0 = Pr(ω = 1)

◮ Analyst chooses a disclosure rule/test π(·|ω), prob rating s ∈ {H , L} given ω

◮ State of asset observed privately by analyst, rating issued following rule/test

◮ Continuum of investors, fraction ν naive, 1− ν sophisticated, dx capital

◮ Sophisticated observe the disclosure rule and rating, update belief

◮ Naive believe rating honest, H ⇐⇒ ω = 1 and L ⇐⇒ ω = 0
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Application: Financial Rating

◮ Investors draw i.i.d outside options θi ∼ F (·), support [0, 1]
◮ Investors decide whether to invest or take outside option.

◮ Invests if belief that asset is good exceeds outside option (asset value ω)

◮ Sophisticated invests if Bayesian update exceeds outside option, µ ≥ θi
◮ Naive invests if s = H

◮ Aggregate investment at µ is (1− ν)F (µ) + νI(s = H)
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Application: Financial Rating

◮ Analyst would like to increase investment in asset → use high rating to
manipulate naive types

◮ Analyst would also like to avoid exaggeration.

◮ If high rating on bad asset, (expected) cost k > 0
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Application: Financial Rating

Normalizing by (1− ν)−1, interim payoffs

!v(µ,H) = F (µ) + b − c(1− µ)

!v(µ, L) = F (µ)

◮ Concavity/convexity of interim payoffs determined by F (·).
◮ Position determined by sign(b − c).

◮ If b > c , graph !v(·,H) strictly above

◮ If b < c , graphs cross once.
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Application: Financial Rating

◮ Concavity/convexity → reveal or conceal from sophisticated investors
◮ If F (·) concave, sophisticated investment maximized by concealing
◮ If F (·) convex, sophisticated investment maximized by revealing

◮ Sign(b − c) → gain from manipulation (H in bad state).
◮ In bad state, high rating increases analyst payoff by b − c .
◮ If b < c , manipulation costly (separation)
◮ If b > c , manipulation beneficial (pooling on H)

◮ Sophisticated and naive investors generate incentives that operate through
different channels, may reinforce or oppose each other
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Application: Financial Rating

µ

!v(·,H)

!v(·, L)
b

b − c

Concave F (·), b < c
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Application: Financial Rating
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Application: Financial Rating

µ

!v(·,H)

!v(·, L)
b

b − c
µµ

HL
π(·|·) > 0

Concave F (·), b < c
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Application: Financial Rating

◮ Three forces at play

1. conceal information from sophisticated
2. gain b in good state, assign H
3. avoid cost b − c < 0 in bad state, assign L.

◮ High prior, unlikely pay b − c → pool H

◮ Low prior, unlikely to gain b → pool L

◮ Moderate prior, all three forces→ some info, not full
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Applicaxtion: Financial Rating

◮ Optimal rating may both overstate π(H |0) > 0 and understate π(L|1) > 0

◮ Incentive to separate comes from fraction of naive investors.

◮ At a given prior, increase in fraction of naive investors can switch optimal
rating from uninformative to informative.
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Application: Financial Rating

µ

b

!v(·,H)

!v(·, L)

b − c

Convex F (·), b > c
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Application: Financial Rating

µ
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Application: Financial Rating

µ
µµ

b

!v(·,H)

!v(·, L)

b − c

µT
L

µT
H

µI
H

µI
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TruthfulHInverted

Convex F (·), b > c
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Application: Financial Rating

◮ Convexity → reveal to max sophisticated investment, separation

◮ b > c → manipulating naive (net) beneficial, pooling on H

◮ If high fraction of naive → pool on H

◮ Suppose separate, sophisticated investment maximized. Naive invest in state
w/ rating H . Assign H to state that is more likely:
◮ High prior, H in good state→truthful
◮ Low prior, H in bad state→inverted
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Application: Financial Rating

◮ Truthful rating more risky than inverted: either both invest or neither.

◮ Inverted rating, less investment in good state, more in bad.

◮ Bad state likely, inverted rating better.

◮ Inversion surprising; examples in literature of highly manipulated ratings;
good rating, leads to sophisticated selling and naive buying

◮ Stronger response than expected without commitment. High rating
discounted, not inverted.
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Application: Financial Rating

Ratings vs. Announcement

◮ Without commitment, standard taxonomy of equilibria

◮ In all such equilibria (w/ pooling refined)

1. Low rating reveals bad state
2. High rating (weakly) favorable news
3. Informativeness determined by b vs. c . Shape of F (·) irrelevant.
4. Higher fraction of naive reduces informativeness

◮ Optimal rating differs on all four points.
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Application: Platform Design

Platforms often have a financial incentive to steer customers to particu-
larly profitable products and can use the power of defaults and ordering
to accomplish that effectively.

—Scott-Morton, et al (2019) p. 51

◮ Platform algorithm orders products, changes incentive to search (steering)

◮ Platform has superior information about match quality, used by algorithm

◮ Position also reveals information

◮ Key idea: how do steering and information provision interact?

◮ For exposition, present slightly simpler, equivalent model to paper

Boleslavsky and Shadmehr (2024): Signaling w/ Commitment



Application: Platform Design

◮ Consumer narrowed down a choice to two products, {A,B}, will buy one

◮ Product B known, payoff u ∈ (0, 1) (including price).

◮ Uncertain about A, may be better or worse than B .

◮ If buys B , payoff ω ∈ {0, 1}.
◮ Pr(ω = 1) = µ0 (throughout µ is belief ω = 1).
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Application: Platform Design

◮ Both products sold on online platform

◮ To buy or learn about product, consumer must access its “listing.”

◮ Listing for B provides link to purchase product.

◮ Listing for A provides link, also product information.

◮ When A’s listing accessed, consumer learns true match-quality ω with
probability r < r̄ , otherwise learns nothing (“truth or noise”).

◮ Platform collects commission on sales, kA = 1 and kB = 0.

◮ Platform paid f ∈ (0, f̄ ) if sequences A first (for exposition).
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Application: Platform Design

◮ Platform designs algorithm that customizes search results given match ω

◮ Algorithm affects consumer’s ability to learn or buy products (“steering”)

◮ One product listing may be featured at top of page, other buried

◮ Easy product “positioned” or “sequenced” first, difficult product second

◮ Because algorithm conditions on match-quality, results reveal information
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Application: Platform Design

(0) Platform commits to algorithm, π(s|ω), probability that product s ∈ {A,B}
sequenced first, given ω.

(1) Consumer observes first listing . Decides whether to buy first product, or
pay search cost cin(0, c̄) to access second listing. Buy → end

(2) Consumer observes second listing. Decides which product to buy, free recall
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Application: Platform Design

◮ No commitment: A first

◮ To study commitment, determine probability of selling A when each product
sequenced first, assuming consumer’s belief is µ upon seeing the first product

◮ Must solve consumer’s (totally standard) search problem. See it
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Application: Platform Design

µ

!v(·,A1)

θB

f

1 + f

1

0
θA

!v(·,B1)

(i) Jumps from change in search strat, (ii) Shift up from fee f , not too big
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Application: Platform Design

µ
µ̂

!v(·,A1)

θB

µNS
A1

µPS
A1

µNS
B1

1 + f

1

µPS
B1

θA

!v(·,B1)

(P): positive sequencing (N): negative sequencing
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Application: Platform Design

For µ0 ∈ (µ̂, θA), optimal algorithm is positive sequencing.

◮ Positive sequencing induces beliefs {µB1 = 0, µA1 = θA}.
◮ The first position reveals good news about the product.

◮ If B first, consumer knows it matches, buys immediately.

◮ Uninformed buys A if first, but believes B is better match (θA < u)

◮ Positive sequencing deters search
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Application: Platform Design

For µ0 ∈ (0, µ̂), optimal algorithm is negative sequencing.

◮ Negative sequencing induces beliefs {µA1 = 0, µB1 = θB}.
◮ The first position reveals bad news about the product.

◮ If A first, knows B matches, searches to buy it.

◮ If B first, consumer searches. Believes A is better match (θB > u).

◮ Here, when consumer searches, believes the second product is likely better.

◮ Negative sequence encourages search
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Application: Platform Design
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Effect of Search Cost, Small c .
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Application: Platform Design
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Boleslavsky and Shadmehr (2024): Signaling w/ Commitment



Application: Platform Design
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Recommendation System (Extended Commitment)
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Application: Platform Design
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Application: Platform Design

◮ Platform benefits from recommendation system.

◮ Can incentivize most favorable search and always place A-first to collect fee

◮ Optimal recommendation system hurts consumer...

◮ Consumer’s ex ante payoff higher with optimal sequencing algorithm

◮ Gains come from reduction in search cost

◮ Result: PS and NS better for consumer than no commitment (A1 always).
With recommendation system, consumer payoff as if no commitment, worse.

◮ “Power of defaults and steering” is nuanced
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Thanks for listening!
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Application: Platform Design

A first
0 1u

µ
θA

Buy A unless learn ω = 0Buy B unless learn ω = 1

B first
0 1u

µ
θB

Buy A unless learn ω = 0Buy B
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